
Code Shaping
Iterative Code Editing with Free-form Sketching

Ryan Yen
University of Waterloo

Jian Zhao
University of Waterloo

Daniel Vogel
University of Waterloo

1. only first three features…

2. Plot distribution

Finding #2: 
A Single Sketch can Represent Various Meanings

Ink-based sketching has long been used in programming tools to help programmers express ideas 
visually and intuitively. These sketches serve various purposes, such as enhancing code 
comprehension, communicating with collaborators, and specifying intended edits. 

Recent advances in sketch recognition have brought up the possibility of a concept we termed, "code 
shaping," where sketched annotations are operationalized into actionable code edits. Unlike the 
current most prevalent tools that convert sketched visualizations or UI components into code, our 
research explores editing code directly through sketches on the code editor. This approach allows 
programmers to encapsulate their expectations of code functionality through sketches, connecting 
annotations with the syntactic structure of the code. 

However, the ambiguous nature of sketches presents challenges, as similar annotations can have 
different meanings in various contexts. To address this, we conducted an exploratory study with six 
programmers using a prototype that converts free-form sketches into code edits, aiming to understand 
how programmers convey and how systems interpret these annotations.

3.2. Including visualization into the current function

3.3. Create a function refer to another existing function

3.1. Create a function to visualize the plot

Finding #1: 
Programmers Developed their Personalized Workflow

Finding #3: 
Types of Sketches

Finding #4: 
Sketch as a Tool

Participants developed personalized workflows. Some found breaking tasks into too 
much detail ineffective for AI interpretation, while others preferred smaller task pieces 
for better understanding. High-level instructions were often used initially, followed by 
detailed annotations after evaluating the generated code.

Similar sketches were used for different purposes. This ambiguity 
made it challenging for the system to accurately translate 
annotations into code edits, leading to clearer mappings between 
sketches and code edits, especially with multiple annotations.

Sketches were categorized into a quadrant based on two 
spectrums: Abstract-Concrete and Procedural-Functional. 
Abstract sketches included symbols or graphs, while concrete 
sketches were written text. Procedural sketches described the 
program structure, and functional sketches specified how the 
program should work. Participants often combined these aspects 
in their annotations.

Participants viewed sketches as functional tools that could be 
reused, not just static drawings. They chose sketches based on 
the environment and reused them to achieve similar effects.

Future Progress
We plan to iterate on the design based on the insights gained to 
support programmers in the iterative process of translating 
thought into sketches to code editing.


