
Code Shaping: Iterative Code Editing with Free-form Sketching
Ryan Yen

School of Computer Science,

University of Waterloo

r4yen@uwaterloo.ca

Jian Zhao

School of Computer Science,

University of Waterloo

jianzhao@uwaterloo.ca

Daniel Vogel

School of Computer Science,

University of Waterloo

dvogel@uwaterloo.ca

Figure 1: (a) A programmer sketches an arrow pointing from data attributes to a drawn bar chart and annotates the code with def
to generate edited code. Right: Data collected from the user study showing how users employ arrows (→) for different purposes,

including: command (the intended action of operation), parameter (supplementing the command), and target (the area where

the edit should occur); (b) indicating procedural flow between commands; (c) referring to data attributes; (d) modifying a

function, with the function as the parameter to supplement the command; (e) applying changes to a target area.

ABSTRACT

We present an initial step towards building a system for program-

mers to edit code using free-form sketch annotations drawn directly

onto editor and output windows. Using a working prototype system

as a technical probe, an exploratory study (𝑁 = 6) examines how

programmers sketch to annotate Python code to communicate edits

for an AI model to perform. The results reveal personalized work-

flow strategies and how similar annotations vary in abstractness

and intention across different scenarios and users.

KEYWORDS

ink-based sketching, programming interface

1 INTRODUCTION

Many programmers use free-form sketching to externalize ideas

to plan high-level structure, workout algorithms, and annotate

code. Code annotations in particular serve various purposes, such

as enhancing code comprehension [2, 11], communicating with

collaborators [5], and planning future edits [9, 10]. However, past

practice and previous research mostly treat sketched annotations

on code as static externalizations of a programmer’s thoughts [7],

not as actionable commands to interactively edit code. We propose

a sketch-based editing approach where a programmer iteratively

draws free-form annotations on and around a code editor to iter-

atively modify structure, flow, and syntax: a concept we call code
shaping. For example, to insert a new function to draw charts, the

programmer could circle lines of code about data attributes, draw

an arrow to a sketch of a graph, then draw an arrow with the word

“def” leading back to an insertion point in the code (Figure 1a).

, ,
.

We differentiate the concept of code shaping from another line

of research that focuses on converting sketched drawings, such as

visualizations or user interfaces on a canvas, into code [4, 12]. These

sketches directly represent the final output, without considering

the syntactic structure of the code. Instead, our research explores

editing code directly through sketches made on the code editor

itself. This approach enables programmers to sketch annotations

that encapsulate their expectations of how the program should

work and connect these sketches with the syntactic code. While

recent advances in multi-modal large language models have made

this concept more feasible, this approach introduces challenges that

need to be understood and addressed. First, the similar annotation

could have different meanings across various scenarios and tasks

(Figure 1b-e), stemming from the ambiguous nature of sketches [1,

3]. Second, the obscure nature of AI models forces users to guess

the reasons for recognition failures and opportunistically change

the annotations to make them work. These challenges highlight

the need for a system that supports users in iteratively clarifying

and modifying both code and annotations.

We conducted an exploratory study with six programmers, using

a prototype that transforms free-form sketches on a code editor

into actual code edits and reported results in section 4.

2 PROTOTYPE SYSTEM

Our system integrates a code editor within a canvas environment

to enable code shaping. The interface supports various free-form

sketching tools, including color selectors, pens, erasers, and shapes.

A text tool is available for conventional editing. Two-finger panning

and zooming navigate the code in the editor to enable sketching

at different levels of granularity. A pointer tool can select one or

more annotations. Pressing a “Generate” button uses all current

1

https://orcid.org/0001-8212-4100
https://orcid.org/0002-7761-6351
https://orcid.org/0000-0001-7620-0541

, , Yen et al.

annotations, or only selected annotations, as parameters for gener-

ating edited code. The system recognizes free-form annotations on

the code editor, utilizing GPT-4o to generate corresponding code.

We render HTML content from both the code editor and sketches

onto separate canvases and embed these canvas content into an

SVG. This transformation process includes handling CORS and

tainting issues, adding grids to locate annotations, and turning the

code editor to grayscale to highlight the sketches. The system then

considers the annotations alongside previous iterations of sketch

editing and the relevant codebase as part of the input context for

code generation. After the code is generated, a difference algorithm

is employed to only update the changed sections of the code [6].

The user can press a “Run” button to execute the code, with text or

image results shown in the console panel underneath. Users can

annotate any executed results as part of their sketches.

3 EXPLORATORY STUDY

We recruited six participants (1 left-handed), aged 23 to 28, with

4 identifying as women and 2 as men. Participants were recruited

through convenience sampling and received $30 for completing the

study. All participants had 2-8 years of programming experience

and had used ChatGPT or Copilot 3-12 times per week. We designed

three coding scenarios, each with two tasks that required specific

edits to reach the goal for each scenario. These scenarios covered

basic Python programming with object-oriented programming, ma-

chine learning with functional programming, and data engineering

with declarative programming. A starter code was provided for each

task, requiring edits in more than two areas. For example, a task was

to extend a class to handle data points with categorical features, re-

quiring changes to current methods to encode features and modify

distance calculations accordingly. All tasks were pre-tested to en-

sure that GPT-4o could not generate the correct code immediately.

Participants were assigned 2 out of 3 scenarios that they were more

familiar with based on their specifications in the screening ques-

tionnaire to avoid relying solely on natural language prompts. They

completed 2 scenarios × 2 tasks each in 50 minutes. Afterward,

there was a post-study survey, including UMUX-LITE, NASA-TLX,

and a 7-point Likert scale questionnaire evaluating factors such as

the clarity of mapping between sketches and edited code and the

ease of iterating on sketches. Finally, a semi-structured interview

gathered qualitative data on their general experience, challenges

encountered, and suggestions for system improvement.

4 RESULTS

All but two participants completed the four assigned tasks, the

two participants failed to complete scenario2-task2 within the

assigned time. The clarity of the effect of their sketches on gen-

erated code (𝑀𝑑𝑛 = 3.5, 𝑆𝐷 = 1.83) and the ease of iterating on

sketches (𝑀𝑑𝑛 = 4, 𝑆𝐷 = 2.34) was rated low. This aligns with

our interview results, where participants noted unclear mapping

between sketches and edited code, especially with multiple annota-

tions. Four participants expressed a desire to see their annotations

stick to the corresponding changed code segments.

Personalized Workflow. We observed participants gradually

develop a personalized workflow for editing code with sketches.

P2 found that breaking down tasks into very low-level details was

Figure 2: The classification of sketched annotations from

participants situated in a quadrant with two spectrum, Ab-

stract-Concrete and Procedural-Functional.

ineffective for AI interpretation, while P5 emphasized the need

for smaller task pieces for better system understanding. Partici-

pants sometimes wrote higher-level instructions first when unsure

about the solution but had a rough idea of where the code edits

should happen and what the “shape of the code looks like” [P4]. After
evaluating the generated code, they then added annotations for

lower-level code editing based on their approaches in mind.

Types of Sketches. Participants used similar sketches for differ-

ent purposes, such as arrows pointing to context [P1] or targets of

changes [P4] (Figure 1b-e). Overall, the sketches could be situated

in a quadrant with two spectrums (Figure 2): Abstract-Concrete

and Procedural-Functional. The Abstract-Concrete spec-

trum describes whether the annotations are abstract symbols or

graphs versus concrete written text. The Procedural-Functional

spectrum classifies the target of the annotations, ranging from pro-

cedural steps describing how the program should be structured and

run to functional descriptions specifying how the program should

work. Participants often combined these aspects, drawing graphs

and adding arrows to refer to certain data attributes, specifying

both functional and procedural terms.

Sketch as a Tool. Additionally, we observed that participants

considered sketches as functional “tools” that could be reused [8],

not just as static digital ink drawings. All participants expressed

that they could use different sketches to achieve the same effect,

choosing which sketch to use based on the environment, such as

available white spaces. They also reused their sketches to convey

the same effect; for instance, an arrow used to add a function to a

target code section was reused by P3 to add another function.

Future Work. This poster takes the first step towards under-

standing the idea of code shaping through a prototype developed in

an exploratory user study. We plan to iterate on the design based on

the insights gained to support programmers in the iterative process

of translating thought into sketches to code editing.

2

Code Shaping , ,

REFERENCES

[1] Christine Alvarado and Randall Davis. 2007. Resolving ambiguities to create a

natural computer-based sketching environment. In ACM SIGGRAPH 2007 Courses
(San Diego, California) (SIGGRAPH ’07). Association for Computing Machinery,

New York, NY, USA, 16–es. https://doi.org/10.1145/1281500.1281527

[2] Xiaofan Chen and Beryl Plimmer. 2007. CodeAnnotator: digital ink annotation

within Eclipse. In Proceedings of the 19th Australasian Conference on Computer-
Human Interaction: Entertaining User Interfaces (Adelaide, Australia) (OZCHI ’07).
Association for Computing Machinery, New York, NY, USA, 211–214. https:

//doi.org/10.1145/1324892.1324935

[3] Randall Davis. 2007. Magic Paper: Sketch-Understanding Research. Computer
40, 9 (2007), 34–41. https://doi.org/10.1109/MC.2007.324

[4] James A Landay and Brad A Myers. 1995. Interactive sketching for the early

stages of user interface design. In Proceedings of the SIGCHI conference on Human
factors in computing systems. 43–50.

[5] Leonhard Lichtschlag, Lukas Spychalski, and Jan Bochers. 2014. CodeGraffiti:

Using hand-drawn sketches connected to code bases in navigation tasks. In 2014
IEEE Symposium on Visual Languages and Human-Centric Computing (VL/HCC).
IEEE, 65–68.

[6] Eugene W Myers. 1986. An O (ND) difference algorithm and its variations.

Algorithmica 1, 1 (1986), 251–266.

[7] B. Plimmer, J. Grundy, J. Hosking, and R. Priest. 2006. Inking in the IDE: Experi-

ences with Pen-based Design and Annotatio. In Visual Languages and Human-
Centric Computing (VL/HCC’06). 111–115. https://doi.org/10.1109/VLHCC.2006.

28

[8] Miguel A Renom, Baptiste Caramiaux, and Michel Beaudouin-Lafon. 2022. Ex-

ploring technical reasoning in digital tool use. In Proceedings of the 2022 CHI
Conference on Human Factors in Computing Systems. 1–17.

[9] Sigurdur Gauti Samuelsson and Matthias Book. 2020. Eliciting Sketched Expres-

sions of Command Intentions in an IDE. Proceedings of the ACM on Human-
Computer Interaction 4, ISS (2020), 1–25.

[10] Sigurdur Gauti Samuelsson and Matthias Book. 2023. Towards a Visual Language

for Sketched Expression of Software IDE Commands. In 2023 IEEE Symposium on
Visual Languages and Human-Centric Computing (VL/HCC). IEEE, 115–123.

[11] Craig J Sutherland, Andrew Luxton-Reilly, and Beryl Plimmer. 2015. An ob-

servational study of how experienced programmers annotate program code. In

Human-Computer Interaction–INTERACT 2015: 15th IFIP TC 13 International Con-
ference, Bamberg, Germany, September 14-18, 2015, Proceedings, Part II 15. Springer,
177–194.

[12] Zhongwei Teng, Quchen Fu, Jules White, and Douglas C. Schmidt. 2021.

Sketch2Vis: Generating Data Visualizations from Hand-drawn Sketches with

Deep Learning. In 2021 20th IEEE International Conference on Machine Learning
and Applications (ICMLA). 853–858. https://doi.org/10.1109/ICMLA52953.2021.

00141

3

https://doi.org/10.1145/1281500.1281527
https://doi.org/10.1145/1324892.1324935
https://doi.org/10.1145/1324892.1324935
https://doi.org/10.1109/MC.2007.324
https://doi.org/10.1109/VLHCC.2006.28
https://doi.org/10.1109/VLHCC.2006.28
https://doi.org/10.1109/ICMLA52953.2021.00141
https://doi.org/10.1109/ICMLA52953.2021.00141

	Abstract
	1 Introduction
	2 Prototype System
	3 Exploratory Study
	4 Results
	References

