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Figure 1: CoLadder enables programmers to flexibly decompose tasks, aligningwith theirmentalmodels for solving programming
tasks using LLM-driven code assistants (A). The system provides a tree-based editor that allows programmers to hierarchically
express their intent through smaller, modular-based prompt blocks (B). This hierarchical prompt tree structure is then used to
generate code, with each prompt block corresponding to a code segment (C). Programmers can directly manipulate the code
based on the prompts using a series of block-based operations.

ABSTRACT
Programmers increasingly rely on Large Language Models (LLMs)
for code generation. However, misalignment between program-
mers’ goals and generated code complicates the code evaluation
process and demands frequent switching between prompt author-
ing and code evaluation. Yet, current LLM-driven code assistants
lack sufficient scaffolding to help programmers format intentions
from their overarching goals, a crucial step before translating these
intentions into natural language prompts. To address this gap, we
adopted an iterative design process to gain insights into program-
mers’ strategies when using LLMs for programming. Building on
our findings, we created CoLadder, a system that supports program-
mers by facilitating hierarchical task decomposition, direct code
segment manipulation, and result evaluation during prompt au-
thoring. A user study with 12 experienced programmers showed
that CoLadder is effective in helping programmers externalize their

problem-solving intentions flexibly, improving their ability to eval-
uate and modify code across various abstraction levels, from goal
to final code implementation.

KEYWORDS
large language model, code generation, LLM-driven system, prompt
engineering, cognitive engineering

1 INTRODUCTION
Recent advances in large language models (LLMs) have led to signif-
icant progress in AI-driven code assistants [15, 29, 48] and brought
changes to programmers workflows [41, 58, 77]. These LLM-driven
code assistants have extended their functionality beyond code com-
pletion to generate high-quality code suggestions in response to
natural language (NL) prompts. Programmers can now translate
high-level goals into NL prompts without needing to deal with low-
level code intricacies. While this distinct capability can potentially

ar
X

iv
:2

31
0.

08
69

9v
2 

 [
cs

.S
E

] 
 2

6 
D

ec
 2

02
3

https://orcid.org/0000-0001-8212-4100
https://orcid.org/0009-0002-2652-7241
https://orcid.org/0000-0003-4617-5116
https://orcid.org/0000-0002-9425-0881
https://orcid.org/0000-0001-5008-4319


Ryan Yen, Jiawen Zhu, Sangho Suh, Haijun Xia, and Jian Zhao

enhance programming efficiency, recent research on programmers’
interactions with LLM-driven code assistants has revealed their
challenges in evaluating the alignment between their intentions and
the generated code [52, 58, 71, 77]. This intention misalignment fur-
ther necessitates programmers to iteratively refine prompts, adding
to their workload and cognitive burden [26, 53, 74, 86].

The evaluation challenge emerges due to the ambiguous process
of transforming a programmer’s goal into generated code (Fig. 2
Gulf of Execution). To overcome this challenge, it is necessary to
bridge the gaps between the overarching goal and the specific inten-
tions necessary to accomplish it (Fig.2, Goal-Intention), as well as
the gap between these intentions and the natural language prompts
required for code generation (Fig. 2, Intention-Code). The first gap
pertains to the intention formation and intention externalization
processes. In this stage, programmers must articulate their inten-
tions through planning and goal decomposition and subsequently
translate these intentions into NL prompts. The second gap is often
termed the abstraction gap (Fig. 2.G), leading to the challenge of
abstraction matching. Programmers must continually refine their
prompts to ensure they contain the required level of detail for
models to generate accurate code. Because of the abstraction gap,
programmers’ prompts often lack the essential specificity and preci-
sion required for LLMs to accurately translate their intentions into
generated code. For instance, programmers may intend to validate
an email address when the submit button is clicked, expressed as
“validate email when form submitted” in the prompt. However, the
generated code might implement a validation mechanism triggered
when the API is called, deviating from the original intention of
immediate email validation upon clicking the submit button in the
user interface.

Researchers have proposed several techniques to scaffold the sec-
ond gap—the abstraction gap between programmers’ well-defined
intentions and NL prompts. For instance, Liu et al. introduced the
technique of grounded abstraction matching, which involves trans-
lating the code back into a predictable NL expression [52]. Another
major approach is to decompose complex prompts into sub-prompts
of a pre-defined abstraction level [13, 38, 68, 85, 86]. Specifically,
the programming task is divided into smaller, more manageable
sub-tasks, each at a set level of complexity or detail.

However, previous research has not addressed the first gap in
the context of programmers using LLM-driven code assistants—
the intention formation and externalization process (Fig. 2.E, F),
which lies between the overarching goal and programmers’ specific
intentions—despite it being a pivotal factor in successfully tack-
ling programming tasks [36, 44]. The intention formation process
involves the programmer’s cognitive thinking process from a high-
level goal to concrete intentions, which may entail determining
what needs to be done or how to approach the goal. The intention
externalization process involves further operationalizing these in-
tentions into executable NL prompts. Continuing with the previous
email validation example, programmers often begin with a higher-
level goal, such as “create a login page.” Programmers must further
break down this goal into sub-goals that detail how or what actions
to take, such as adding input fields or updating values when users
type. The process of goal decomposition and intention formation is
a crucial step for both programmers in problem-solving and LLMs
in generating code that aligns with programmers’ intentions.

The goal of this research is thus to explore design opportunities
for supporting programmers in the intention formation process
and the subsequent externalization process. We conducted a forma-
tive study with six experienced programmers who regularly use
LLM-driven code assistants. Findings from the study suggest that
programmers are hindered due to the lack of informative prompt or-
ganization and the inability to directly control and manipulate gen-
erated code segments. Based on our findings, we propose CoLadder,
a system that assists programmers with externalizing hierarchical
prompt structures to generate code that aligns with their intentions.
CoLadder introduces the concept of hierarchical generation which
helps programmers decompose goals into subtasks (Fig.1 A), create
a task structure externalizing their intentions (Fig.1 B), and gen-
erate corresponding code (Fig. 1 C). Each prompt in CoLadder is a
modular block linked to code segments, allowing precise modifica-
tion within the hierarchical task structure. Furthermore, CoLadder
enables evaluation during the prompt authoring process by pro-
viding scaffolding through multiple levels of abstraction, including
goals, intentions, prompts, pseudocode, and generated code.

We further conducted a user study with 12 experienced program-
mers who frequently use LLM-driven code assistants to evaluate
the usefulness of CoLadder. The results validate that CoLadder helps
programmers form and externalize their intentions. The direct ma-
nipulation of prompt blocks at multiple levels of abstraction to
modify the corresponding code provides programmers with con-
trol over the translation of their intentions into code. With the
supported scaffolding, CoLadder prevents programmers from dis-
ruptive cognitive switching between prompt authoring and code
evaluation. These findings imply the concept of hierarchical genera-
tion as a design consideration for future developments in interactive
LLM-code assistants. In summary, our contribution is threefold:
• A formative study identified programmers’ strategies for forming

and externalizing intentions to generate code.
• An interactive system, CoLadder, employs a hierarchical struc-

ture and block-based design to provide programmers with code
generation capabilities across multiple levels of abstraction.

• A user study demonstrating improved usability by enhancing
controllability with hierarchical generation and enabling result
evaluation during the prompt authoring process.

2 GOAL, INTENTION, PROMPT, AND
GENERATED CODE

In the pursuit of the goal of a programming task, programmers
must cultivate clear intentions [35, 36, 44]. These intentions are
articulated from the comprehension of what the program is in-
tended to achieve (declarative knowledge) and the procedures in-
volved in achieving it (procedural knowledge) [16, 27]. This inten-
tion formation process involves the dissection of the overarching
goal into smaller, manageable subgoals and then the externalization
of the program’s elements with varying depths and extents (Fig. 2
E) [27, 34, 40, 69, 72]. Externalizing layered intentions into actions
is crucial (Fig. 2 F), particularly in LLM-driven systems where the
gulf of execution can become fuzzy due to LLMs’ ability to gener-
ate results from various formats of NL prompts. These prompts
then carry the programmer’s structured intentions into the LLM
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Figure 2: We have adapted Norman’s seven stages of action to illustrate cognitive processes when interacting with LLM-driven
systems. This model covers programmer intention formation (E) and externalization (F) within the gulf of execution, while the
gulf of evaluation evaluates alignment between generated code and intentions. It underpins our system design, which addresses
hierarchical goal decomposition (A), intention-code manipulation (B), context-switching challenges (C), and prompt-code
correspondence (D).

generation process. Prior research strived to bridge the abstrac-
tion gap (Fig. 2 G)—the disparity between the human intention
behind the prompt and the code generated by LLMs [52, 71]. In
contrast, our research emphasizes supporting intention formation
(Fig. 2 A) and its subsequent externalization process, which em-
powers programmers to precisely guide the code generation with
controllability (Fig. 2 B). Moreover, our work incorporates features
that reduce the gulf of evaluation [61] (Fig. 2 D), enhancing the
programmer’s ability to perceive, interpret, and evaluate the LLM’s
output without excessive context switching from prompt authoring
and code evaluation (Fig. 2 C).

3 BACKGROUND AND RELATEDWORK
We reviewed related research on challenges in programmer-LLM
interaction, existing solutions, and theories related to the intention
formation process.

3.1 Programmer-LLM Interaction
While the interaction between programmers and AI has been ex-
plored in various contexts, our focus is on large language model-
driven code generation tools. Recent advances in LLMs mark a
significant breakthrough in code generation compared to preced-
ing deep learning models. Previous research has conducted several
user-centered studies to understand how programmers interact
with LLMs-based code assistants and their perceptions of these
tools [7, 19, 50, 58, 60, 66, 71, 75, 77, 88]. Studies have shown that
the accuracy of code assistants has improved significantly with
the availability of state-of-the-art LLMs [15, 65], thereby increas-
ing perceived productivity [48, 91], especially in tasks that require
writing simple code snippets repeatedly [7, 71].

Challenges of Evaluation. However, programmers now need
to dedicate considerable time to evaluating AI-generated code sug-
gestions [7, 58]. Excessive evaluation needs can lead to several
issues [70, 78, 82]. Programmers are often intimidated by the seem-
ingly overwhelming effort required for code validation and bypass

the evaluation step. This causes problems like over-reliance on
generated suggestions [7, 15, 88], and loss of control over their
programs [77], which then introduces challenges during code mod-
ification [1, 13]. Programmers are also taxed with the extra cogni-
tive load of switching between programming and debugging tasks
[8, 24, 55, 77].

Abstraction Matching Issue. Sarkar et al. [71] observed that
programmers often engage in iterative evaluation and prompt re-
finement to understand how well LLM-driven code assistants can
interpret their prompts and generate the desired code, a process
referred to as abstraction matching. Programmers are required to
grasp the models’ capabilities and limitations to understand the nec-
essary naturalistic utterances to generate code that aligns with their
intents. This issue is rooted in the notion of the gulf of execution
[39]. The problem of matching abstractions becamemore noticeable
with LLMs due to their capability to generate code at different levels
of abstraction, ranging from high-level, conceptual descriptions to
low-level, detailed pseudo-code-like statements, which cover innu-
merable combinations of natural language expressions [52, 86]. Our
study extends the focus from abstraction matching from prompt-
code to goal-code, considering the need for scaffolding intention
formation process for programmers.

3.2 Improving LLM-based Code Generation
Compared to technical approaches like prompt engineering and
few-shot learning, several design solutions and systems have been
proposed to enhance interaction with LLM-driven code assistants.
These strategies encompass various techniques, such as introducing
new programming languages [9, 38], automating prompt reword-
ing [25, 83], employing programming by demonstration techniques
[18, 51], and supporting task breakdowns [68, 86]. However, de-
termining the ‘correct’ level of abstraction remains a challenge, as
overly detailed prompt decomposition can result in the program-
ming process with LLMs resembling the use of a “highly inefficient
programming language” [71]. Hence, prior research into natural
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language interfaces suggests the benefit of managing expectations
and gradually revealing the capabilities of the system through user
interaction and intervention [52, 54, 70, 78].

Noticing this issue, prior research has proposed several approaches.
Liu et al. introduced Grounded Abstraction Matching [52] that pro-
vides a decomposed code example that users can modify and submit
to the LLM as instructions, assisting programmers with unclear
intentions and reducing abstraction matching problems. AI Chains
enhance programmer control and feedback by breaking problems
into sub-tasks [86]. Each sub-task corresponds to a specific step
with an NL prompt, and results from previous steps inform prompts
for subsequent tasks. This chaining method increases success rates
when using the same model on multiple tasks [85, 86].

While the previously mentioned approaches that rely on task
breakdowns assist programmers in bridging their intent to code,
they do not emphasize scaffolding programmers’ intention forma-
tion process for solving programming tasks. Additionally, they pri-
marily focus on local prompt-code correspondence without exam-
ining the overall structure matching, especially from task structure
to code structure. In contrast, CoLadder builds upon the concept of
task decomposition and offers increased flexibility and controlla-
bility for programmers to not only craft effective prompts but also
gain a deeper understanding of how their programming tasks can
be logically structured.

3.3 Programmers’ Intention Formation Process
In the programming context, intentions encompass programmers’
mental models of understanding and interpretation of the code,
underlying programming tasks, and the overall structure of the
programs they are working on [4, 20, 89]. Several theories describe
the formation of these intentions [21, 79]. While some theories
suggest a bottom-up approach, starting with understanding code
syntax to derive semantic meanings, others advocate for a top-down
strategy that begins with an initial hypothesis of code functionality
and then evaluates it through syntax analysis [80]. Programmers
must develop intentions at different levels of abstraction [5, 89],
encompassing specific code statements as well as larger program
structures. To support effective interaction and collaboration be-
tween programmers and LLMs in tackling programming tasks, it
is crucial to provide scaffolding for these intentions [26, 52, 71]. In
our work, our primary focus is on supporting programmers in the
formation of intentions to tackle programming tasks and external-
izing these intentions into prompts that generate code in alignment
with their goals.

4 COLADDER: DESIGN PROCESS & GOALS
We conducted an iterative user-centered design to create CoLad-
der, an interface to help programmers decompose tasks based on
their intentions and generate code accordingly. The design process
consisted of three stages: 1) Understanding & Ideation—including
an interview study with experienced programmers to discover the
strategies they employ to address the challenges of programming
with LLM-driven code assistants; 2) Prototype & Walkthrough—the
design and development of CoLadder informed by established de-
sign goals and a cognitive walkthrough for feedback and iterative
design (Section 5); 3) Deploy & Evaluate—a user study to evaluate

how programmers interact with CoLadder and their perceived use-
fulness (Section 6). In this section, we describe the first stage of our
design process and report the obtained strategies and design goals
that guided the design and development of CoLadder (Table. 1).

4.1 Interview Study
We recruited six participants (5 males, 1 female; ages 25 − 27, 𝑀 =

25.8, 𝑆𝐷 = 0.98) through purposive sampling [23]. In our recruit-
ment process, we sought participants experienced in both program-
ming and the use of LLM-driven code generation tools. Eligibility
screening involved a pre-test survey that assessed participants’ pro-
gramming experience on a 5-point scale [1: very inexperienced;
5: very experienced], years of programming experience, and self-
reported familiarity with LLM-driven code generation tools. All
recruited participants had more than five years of programming
experience (𝑀 = 6.67, 𝑆𝐷 = 1.75 years) and were familiar with
programming (score𝑀 = 4.33, 𝑆𝐷 = 0.52), familiar with LLM-code
generation tools (score 𝑀 = 4.5, 𝑆𝐷 = 0.55), and regularly used
the LLM-code generation tools (𝑀 = 8, 𝑆𝐷 = 2.56 times/week).
Detailed can be seen in Appendix B

Participants provided consent and were compensated with 20
CAD for 45-minute study sessions. Before the study, we asked each
participant to share at least three recent examples of their Chat-
GPT [63] usage for generating code to nudge them to reflect on how
they use LLM-code generation tools. In the study, we interviewed
participants to assess their challenges in forming and externalizing
intentions, translating them into code, the strategies they employed
to address these challenges and their needs. All interviews were
audio-recorded and subsequently transcribed into written text. We
analyzed the interviews using thematic analysis [10], employing
both inductive and deductive approaches. After interviewing six
participants, the first two authors conducted the initial analysis
collaboratively. We identified and categorized codes and themes re-
lated to the strategies participants used to address their challenges
and their corresponding user needs. Any disagreements were re-
solved through discussion and ultimately leading to the final themes
after the second iteration.

4.2 Interview Results: Strategies
Overall, participants used LLM-code assistants across various pro-
gramming languages (e.g., Python, JavaScript, and Bash) for a wide
range of tasks, such as unfamiliar code generation, algorithm im-
plementation, and code refactoring (Appendix B).

4.2.1 Structure Tasks and Prompts Hierarchically. We ob-
served that the formation of intentions for participants to solve
programming tasks when prompting LLM-code assistants involves
two key facets. First, programmers need to form clear intentions
for solving programming tasks, which is important to “verify if
the generated code is correct or not” - P3; Second, they must explore
how to effectively construct the prompt to translate those intents to
generated code. However, participants encountered difficulties with
the linear representation of prompts (e.g., a sentence of comment),
hindering their ability to externalize their intentions and under-
stand their own prompts after composing them (C1). For instance,
P1 expressed, “It [the prompt] becomes meaningless after a few it-
erations, as the prompt is not for humans but written for the LLM
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Table 1: The summary of challenges and strategies reported in Section 4.2 and the resulting design goals (Sections 4.3) and
features in CoLadder (Sections 5)

.

Challenges Strategies Design Goals Features
C1: Unstructured Prompt to
Externalize Intention

S1: Task Decomposition DG1: Hierarchical Prompt
Structure

Prompt Tree StructureS2: Hierarchical Structure

C2: Control Loss from Intents
to Code

S3: Incremental Generation
DG2: Direct Manipulation of
Prompts for Code Modification

Prompt BlockS4: In-Situ Generation
S5: Rearrange Code Segments Block-based OperationsS6: Replace Code Segments

C3: Disruptive Context
Switching

S7: Evaluate Results during
Prompt Authoring

DG3: Enabling Code
Evaluation during Prompt
Authoring

List Steps
Auto-Completion
Recommendation

C4: Unclear Correspondence
from Prompt to Code

S8: Add Code to Prompt DG4: Enhancing Prompt-Code
Correspondence

Corresponding Code High-
light

S9: Evaluated by Comments Semantic Highlight

to understand me.” Every participant adopted a similar strategy to
alleviate the cognitive load when forming intentions — by breaking
down tasks into smaller subtasks (S1). Most (5 out of 6 participants,
5/6 henceforth) participants took things a step further by structur-
ing their tasks hierarchically to externalize their intentions (S2).
Most (4/6) participants used bullet points to structure the prompt,
“I will use indent when writing the prompts; this hierarchy structure
helps me think about the detailed steps.” - P6

4.2.2 Generate and Edit Code Segments by Segments. While
participants made efforts to structure their prompts to becomemore
comprehensive, the LLMs exacerbated the difficulties of evaluation
by generating an entire codebase based on the whole prompt. This
issue resulted in a sense of control loss and ‘fear’ over the code
generation process (C2), where participants expressed the desire
to “generate the program bit by bit.” - P2 Some (3/6) participants
mentioned the difficulties in the long-term maintenance of the pro-
gram, “I want to be able to return to my code months later and still
be able to debug it.” - P6 As a result, participants generally preferred
to accept the generated code line by line, similar to the use of auto-
completion features (S3), rather than generating the entire code
base at once. Participants frequently used an additional strategy
(S4) to control the length of the generated code. This strategy in-
volved inserting line breaks between prompts, allowing them to
generate code selectively between specific prompts rather than
generating lengthy code encompassing all prompts. However, im-
plementing this strategy introduced a misalignment issue between
the structured prompts and the code structure, which subsequently
made it challenging for participants to determine “where to insert
newly generated code.” - P2 Participants (4/6) thus reported an alter-
native strategy, where they generated self-contained code segments
independently, and then merged them into the existing codebase
(S5). P5 explained the reason, “I will combine it [generated code] by
myself as I didn’t know what it would look like beforehand.” Another
common strategy is to select a segment of existing code and replace
it with the newly generated code (S6), enabling manipulation of
targeted code segments without impacting other sections. Yet, P3
outlined this tedious process of preserving and combining both

existing and newly generated code, “sometimes if the generated code
is partially accurate, I need to initially accept it, make a copy, undo the
changes, and finally paste the copied code below my original code.”

4.2.3 Evaluate Generated Code through Prompts. All par-
ticipants expressed frustration with current tools that constantly
suggest results, leading to continuous switching between prompt
authoring and code evaluation (C3). They noted that although this
context switching may seem trivial, it significantly disrupts their
overall programming flow. P6 mentioned, “Sometimes I know it [the
generated code] would not be correct, but I will still look into it,” and P4
explained that “probably this time the generated code is correct, who
knows?” However, we observed that participants more frequently
accepted auto-completed prompts, using them to quickly “verify if
the system had accurately captured my [their] intents.” - P3 (S7) Some
participants (P1, P2, P5), deliberately waited for the code assistants
to auto-complete their prompts, which further “reduced the time
needed to verify the generated code.” - P2

4.2.4 Adding Cues to Navigate between Prompt-Code. Par-
ticipants usually need to go through several iterations of the prompt,
which makes it challenging to locate the phrases to modify as the
prompt grows increasingly lengthy. All participants thus reported
difficulties in navigating back and forth between prompt and gen-
erated code segments, finding it “difficult to find which part [of the
prompt] is causing the error that needs to be modified.” - P1 (C4) Sev-
eral programmers (4/6) incorporate code syntax into their prompts
to facilitate code evaluation by making it easier to locate keywords
(S8). For instance, P2 mentioned using pseudo-code-like prompts
as a strategy “to control the generation” and reduce the cognitive
load during the evaluation process. Some participants (2/6) also
mentioned that they would rather rewrite the whole segment of
code, rather than attempt to edit and debug it. “After generating
code, I need to spend a lot of time finding the code causing the error
and also finding the prompt that resorted to this result, I would just
start all over again.” - P1 Participants usually valued the generated
comments (in NL) and used them as anchor points to match seg-
ments of prompts to code (S9). P4 mentioned the reason that “the
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Figure 3: An example workflow of using CoLadder. A user creates a high-level prompt (A) based on their intentions of the
programming task. Subsequently, they add a sub-task indented underneath (B), incorporating code syntax within the prompt (D).
The List Steps feature is employed to summarize the generated code into prompts (E). Following evaluation, the user modifies
the prompt, accepting auto-completed suggestions (C). To ensure code accuracy, the user employs the semantic highlight feature
(F). When additional details are needed, they use the supplement feature to add detail to the prompt (G). Finally, the user
rearranges the prompt structure using the Drag and Drop feature (H).

generated comments are useful to check if the generated code matches
my instructions step-by-step.”

4.3 Design Guidelines for Supporting
Programmers’ Strategies

To support the reported strategies (S1-S9) programmers leveraged
to overcome challenges they encountered (C1-C4), we formulated
four design guidelines (DGs). The main design goal is to offer hier-
archical generation, enabling programmers to form and externalize
abstract intentions into generated code while ensuring alignment.

DG1: Offering Hierarchical Prompt Structure. The lack of
structured prompts hinders programmers from forming and exter-
nalizing the intentions for solving programming tasks (C1). The
system should support prompt decomposition (S1) with a hierar-
chical representation of the prompt structure that externalizes the
task structure programmers possess in mind (S2). Previous research
adopted prompt decomposition by pre-defining the permitted ab-
straction levels [9, 38, 68, 86], which may not necessarily reflect
programmers’ own intuition of how they would have decomposed
the task [14, 87]. Participants adopt a more flexible prompt struc-
ture that varies based on the task’s nature and complexity. Hence,
the system should enable participants to define abstraction levels
for externalizing their intentions.

DG2: Direct Manipulation of Prompt for Code Modifica-
tion. Programmers often experience control loss when evaluating
and modifying large amounts of generated code (C2). This issue
highlights the need to provide programmers with control over the
prompt authoring process. Such support should include the ability
to easily identify, and select the range of modifications (S6), insert
new prompts (S4), and reorganize the structure of prompts (S5). The

systemmust facilitate modifications at different levels of abstraction
that allow programmers to make the necessary changes without in-
advertently modifying unrelated code segments. The system should
also generate results incrementally (S3) instead of generating entire
code simultaneously and overwhelming the programmer.

DG3: Enabling Code Evaluation during Prompt Authoring.
During the iterative refinement of prompts, programmers often
experience cognitive overload due to the disruptive context switch-
ing between code evaluation and prompt authoring (C3). Findings
highlight the possibility of assisting programmers in evaluating
generated results during the prompt authoring process without
necessitating additional context switching. The system should de-
liver feedback in a non-intrusive manner and provide context to
reflect the system’s understanding of the task. This approach helps
programmers understand whether the system accurately captures
their intent (S7).

DG4: Enhancing Prompt-Code Correspondence for Evalua-
tion. To facilitate navigation and modification across various levels
of abstraction, from user intents to the final generated code (C4),
the systemmust ensure correspondence between prompts and code,
including a matching between the overall task and code structure.
The system should also provide visual cues to highlight the seg-
ments of the generated code according to the prompt structure
(S9), for programmers to navigate and modify the desired code
segments. In addition, the system should enable programmers to
write prompts containing code syntax (S8) to help them efficiently
pinpoint the corresponding code.
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Figure 4: CoLadder comprises four key components: (A) the prompt tree editor, allowing programmers to decompose their
intent into smaller prompt blocks; (B) the code editor, facilitating code evaluation and editing; (C) the prompt block, enabling
programmers to compose prompts in mixed mode, incorporating both code and natural language; and (D) the execution result
panel, which displays the execution result and any associated error messages.

4.4 Usage Scenario
Casey is a data scientist who wants to build a regression model
on a wine-quality dataset. While being experienced in Python,
she aims to leverage LLM-driven code assistant to speed up her
development process, and thus she launches CoLadder. Casey starts
by considering the main steps to approach this task by outlining
primary objectives, such as partitioning the dataset, building and
evaluating the regression model, and plotting the results.

PromptAuthoringwithHierarchicalDecomposition. Casey trans-
lates her intent into a set of high-level prompts, such as “Train
Regression Model” (Fig. 3 A), to externalize the code structure she
envisioned. Next, she goes deeper and adds some sub-tasks under
the high-level prompts with the [Add Child] button, adjusting
the level of detail as needed (Fig. 3 B). For example, under “Train
Regression Model”, she adds sub-tasks such as “Partition the Dataset.”
Casey maintains this breadth-first approach, gradually detailing
each high-level task with the [Add Siblings] button. As Casey
added each prompt block, the code was updated in real time accord-
ing to the overall task structure. However, the code editor displayed
only the code for existing prompt blocks, with the rest of the code
segments remaining folded. When Casey crafts these prompts, she
leverages the prompt [Auto-Complete] feature to quickly for-
mulate more detailed prompts (Fig. 3 C). In some cases, she uses
code syntax expressions such as for epoch in range(1, 31): or
load_boston() without the need to translate the code statements
to NL (Fig. 3 D). To define finer-grained steps under each sub-task,
Casey sometimes adds sub-prompt blocks manually and sometimes
utilizes the [List Steps] feature, which automatically suggests step-
by-step guidance for the code to generate. For example, under “for
epoch in range(1, 31)”, the listed steps recommend actions like “Pre-
dict on Train and Test data” that is summarized from the relevant

code snippets concerning the model prediction (Fig. 3 E) assisting
her in evaluating the alignment of the intent-code.

Navigating and Evaluating through Multi-level Prompts. Casey
then navigates through the hierarchical structure with up/down
arrow keys and evaluates highlighted code segments corresponding
to the specific prompt block. The [Semantic Highlight] feature
helps her correlate phrases in her prompts with the code segments
(Fig. 3 F). For instance, her prompt mentions the “ Predict on train
& test data” results in highlighted .predict() in the code segments
and phrases in the prompt block (e.g., “ Train Regression Model”) at
the parent level with lower opacity representing lower correlation.
Casey now affirms that the LLM accurately interpreted her intent
based on the tree structure.

Modification and Block-based Operations. As Casey navigates
through prompts, she identifies code segments that require ad-
justments. In the block “Train Regression Model”, she modifies the
prompt by the [Supplement] feature to specify using L2 regular-
ization and resulted in changing the code from LinearRegression()

to Ridge(alpha=0.5) (Fig. 3 G). Further, she uses the [DnD] fea-
ture to relocate the block “Plot Loss Curve” under the block “for
epoch in range(1, 31)”, resulting in the generation of a plot for each
training epoch (Fig. 3 H). In the end, Casey compiles and runs her
code, observing that the system successfully outputs 30 graphs
displaying loss curves that match her intents.

5 COLADDER
CoLadder consists of two main UI components: 1) The prompt
tree editor (Fig. 4 A) allows the programmer to externalize their
intentions by decomposing the programming task into smaller
prompt blocks (Fig. 4 C); 2) The code editor (Fig. 4 B) allows the
programmer to evaluate the generated code and directly edit the
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Figure 5: Supplement View (Left): Programmers can add additional details to their prompts via a conversational UI. It also
shows the history of supplements and expand or hide by clicking the top right icon; History’s Diff View (Right): programmers
can observe various types of changes (such as edits, additions, supplements), iterations of prompts, and their corresponding
generated code in the diff view.

program. The programmer can also compile and run the current
code to see the results or errors below the code editor (Fig. 4 D).

In the following, we discuss CoLadder’s functionalities and de-
sign in detail based on DG1-4. We also articulated insights from
the same six experienced programmers who participated in our
interview studies, inviting them to take part in cognitive walk-
through experiments during the iterative design process. During
the walkthrough, an experimenter presented the Figma prototype,
verbally explained the interaction flow, and instructed participants
to perform specific actions. Following the system walkthrough, we
conducted semi-structured interviews to collect feedback on the
detailed design of features, their effectiveness, and possibilities for
future improvements.

5.1 From Task Structure to Code Structure
To assist programmers in structuring their prompts hierarchically
to externalize their intentions (DG1), we offer a tree-based prompt
editor that enables programmers to construct prompts that reflect
both the task and code structure. Furthermore, we decomposed
tasks into smaller sub-tasks at multiple levels of abstraction. This
approach enables programmers to directly manipulate their intent
to code based on the hierarchical structure (DG2).

5.1.1 Prompt Tree Editor. The tree-based visualization helps
programmers organize tasks in line with the top-down mental pro-
gramming model. This tree editor allows programmers to convey
task structure through the horizontal indentation of sub-tasks while
still maintaining the program structure vertically. For instance, if a
programmer has added a task, “Extracting quotes from a web page,”
they can represent the hierarchical task structure and execution
order of the code by adding a sub-task, “Find all class=quote,” in-
dented underneath. Rather than automatically decomposing tasks,
CoLadder allows programmers to construct prompts flexibly that
align with their intentions. Based on expert walkthrough sugges-
tions, we implemented a foldable prompt tree, aligning with the
foldable code editor. This is useful for longer programs, eliminating
the need for constant scrolling.

5.1.2 Prompt Block. Each decomposed task in the tree nodes is
referred to as a prompt block, where programmers can write the
prompt in mixed mode (Fig. 4 C). Programmers have the flexibility
to input both NL and code syntax, aligning with their preference
for occasionally using code syntax in the prompt to express their
thoughts. For instance, participants often opt for statements like
“for i in...” rather than NL expressions such as “iterate through the...”.
Each block functions as a miniature code editor, with semantic
highlighting of code syntax and prompts. Several participants (4/6)
wanted prompt block revision history to aid in recalling the rea-
soning behind specific prompts. CoLadder documents prompt block
iterations, visualizing differences in prompts and generated code,
enabling programmers to efficiently navigate and recover specific
iterations as required (Fig. 5 Right).

5.1.3 Block-basedOperations. CoLadder supports direct manip-
ulation of the prompt structure by providing several prompt block
operations that are activated through either buttons or shortcuts.
Each block-based operation will update the corresponding code
and propagate changes to the rest of the code as necessary.
1. [Add] either a block as a sibling (same level) or child (sub-

level) based on their intent (Fig. 6 ADD). After adding a block,
the programmer can start entering their prompt to guide the
system to generate code based on the current task structure in
the prompt tree editor;

2. [Edit] allows programmers to refine prompts when they want
to modify specific code segments. This modification adheres to
a hierarchical structure, so when programmers edit a parent
block containing multiple child blocks, the changes apply uni-
formly to all code segments within those child blocks, ensuring
consistency across related sections.

3. [Delete] unneeded prompt blocks (e.g., parent blocks and all
their children). Similar to the [Edit], this operation will only
affect a segment of the code and propagate the changes across
the rest of the code to prevent errors.

4. [Duplicate] copies prompt blocks, and if the code block is a
parent block with sub-blocks, it duplicates all its child blocks,
creating an identical structure (Fig. 6 DUPLICATE);



CoLadder: Hierarchical Code Generation

Figure 6: ADD Operation enables the addition of sibling blocks or child blocks to the existing prompt structure; DUPLICATE
operation allows for the cloning of sub-trees; DnD operation empowers programmers to reorganize prompt blocks; List Steps
provides high-level, summarized steps from the generated code.

5. Drag and Drop ([DnD]) restructure prompt blocks or elevate
certain code segments to a higher-level scope, allowing them to
create reusable functions or methods accessible by other parts
of the program (Fig. 6 Drag & Drop);

6. [Supplement] adds extra details either to the entire prompt
block or specific phrases within the NL prompt. This feature
addresses the need for additional information required by the
LLM but not necessarily by the programmer to understand the
program. Once a programmer submits supplementary informa-
tion, it will appear as a badge in the top-right corner of the
prompt block, accessible by expanding it.

5.2 Evaluate Results from Prompt
CoLadder offers diverse informative feedback to assist programmers
in assessing whether the system accurately comprehends their in-
tent (DG3). This capability enables programmers to concentrate on
crafting prompts without experiencing disruptive cognitive shifts
between prompt authoring and code evaluation.

5.2.1 List Steps at Lower-Level. To help programmers evaluate
the generated code effectively, we support the List Steps operation,
which allows programmers to understand how the model generated
the code for the current prompt block (Fig. 6 List Steps). This feature
semantically segments the generated code and provides a step-by-
step summarization of these segments, which is then added as new
sub-prompt blocks. It serves as scaffolding for programmers to
comprehend the lower-level details of generated code.

5.2.2 Auto-completion. Participants in the formative study
value the in-line auto-completion and view it as a step to eval-
uate the result. CoLadder support programmers with two types of
auto-complete while editing prompt blocks: 1) Word-level auto-
completion based on variables or semantically related naturalistic
utterance (Fig. 7 B), and 2) Sentence-level prompt auto-completion
from LLM suggests in-line auto-completed prompts based on the
context of the current tree structure (Fig. 7 B). Programmers can
press the tab button to accept these suggestions.

5.2.3 Recommendation. After adding a new prompt block, Co-
Ladder provides multiple possible next steps to the programmer
(Fig. 7 C). These recommended prompts are displayed below the
current prompt block in order of relevance scores suggested by

the model. Programmers can select one of them to add below. This
feature assists programmers in accomplishing their goals in a step-
by-step manner and helps them evaluate if CoLadder correctly
understands their intent by successfully recommending the appro-
priate next steps.

5.2.4 Interim Results. The [Compile] operation allows pro-
grammers to independently execute each block to display the in-
terim results (Fig. 7 D). CoLadder wraps the code from the prompt
tree and compiles the code to display the results. Programmers can
evaluate the interim results to determine the next step.

5.3 Facilitating Prompt-Code Correspondence
CoLadder offers features for programmers to navigate various ab-
straction levels to locate and modify targeted prompt blocks (DG4).

5.3.1 Showing Corresponding Code. Participants found that
evaluating individual code segments was often sufficient. In re-
sponse, CoLadder’s code editor view highlights only relevant code
when programmers select the corresponding prompt block, fold-
ing other code segments. Different code editor glyph’s decorations
illustrate the current location of the prompt in the prompt tree.
For finer adjustments, programmers can directly modify the code
in the code editor, where changes will be propagated back to the
corresponding prompt block.

5.3.2 Semantic Highlight and Dependency. CoLadder offers
two types of syntax highlighting for prompt blocks: semantic high-
lighting to differentiate between code and NL in mixed-mode edit-
ing. Secondly, highlight NL phrases to help understand dependen-
cies across prompt blocks at different levels. This is beneficial when
the programmer refers to the same variable in the code with differ-
ent terms (e.g., df, data, table that all refer to the same dataframe).
The programmer can select phrases within the prompt, and CoLad-
der will display semantically related phrases throughout the tree,
with different entity types shown in distinct colours, and opacity
determined by the relevance score (Fig.8). The relevant code seg-
ment is highlighted in the code editor for easy identification by the
programmer via corresponding phrases from the prompt.

5.3.3 KeyboardNavigation. CoLadder offers keyboard shortcuts
that enable programmers to access features and effectively navigate
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Figure 7: (A) Auto-completion that could be completed in the format of natural language and code syntax; (B) Auto-completion
based on the variable name used before; (C) Recommendation feature that suggests the next step based on the prompt tree
structure; (D) Live execution showing the interim results of the current block.

across blocks. The arrow keys (↓/↑) can move through prompt
blocks at various levels with the highlighted corresponding code
segments in the code editor. Programmers can also use Enter to
start editing, Esc to record the editing, Alt +↓ /↑ to create siblings/
children/ and Alt + Enter to activate the List Steps feature.

5.4 System Implementation
CoLadder is built on the Next.js framework, enabling server-side
rendering for API calls, including the OpenAI GPT-4 API [64] for
hierarchical code generation. The user interface incorporates the
Monaco Editor [57], providing an intuitive coding experience in
both prompt blocks and the main code editor view. To execute and
compile results from LLMs, CoLadder utilizes Pyodide [67], a potent
Python web compiler. Logging is managed through Firebase’s Real-
Time Database, categorizing interactions and responses by unique
user and condition IDs. The entire CoLadder platform is built and
deployed on Vercel, accessible through a public domain URL.

5.4.1 Prompting Techniques. For all code generation features, we
structured the prompt tree into a text-based tree structure with
indices and depth specifying the location of each prompt block [43].
We incorporated a set of few-shot examples derived from hierarchi-
cal prompt use cases identified in the interview study to facilitate
the model’s in-context learning of the tree structure [12]. We fur-
ther developed an output parser to organize LLM responses into
a tree format, where nodes contain unique indexes, prompts, and
code. In addition, we adopted the Chain-of-Thought prompting
technique [47, 81] by using LangChain [45]. This involves guid-
ing the LLM to first generate intermediate reasoning steps in NL,
forming a logical sequence that leads to the final code output. This
approach is beneficial for decomposing complex tasks into manage-
able steps, ensuring logical consistency and adherence to program-
ming practices. For all block-based operations, recommendations,
or auto-completions, the parsed prompt tree serves as the context,
combined with specific prompt templates. These templates and
examples vary based on the operation, allowing for targeted code
generation that aligns with the intended action (Appendix A). We
developed and tested the prompt template using OpenAI’s GPT-4,
the most advanced and publicly available LLM to date.

5.4.2 Features and Block-based Operations. In the [Add] operation,
we instruct the LLM to adopt a bottom-up approach, starting from

the lowest indentation levels and progressively integrating the child
nodes’ code with their parent nodes. For [Edit] operations, the LLM
generates code corresponding to the specific prompt block, taking
into account the history of each prompt iteration as part of the
context. This history acts as a buffer memory, aiding in semantic
searches for related results to regenerate by capturing the difference
between variants and discerning the programmer’s intent. Note
that CoLadder automatically records the prompt iteration history
when a prompt block is edited.

Error prevention and correction mechanisms are implemented
post-code generation to ensure any necessary changes are applied
throughout the codebase (e.g., variable adjustments). After perform-
ing prompt block operations, a sequential chain is established to
use preceding operation outputs as inputs for subsequent actions.
If changes are needed, the system parses the generated text with
the Myers diff algorithm, updating only the segments with applica-
ble changes. For scenarios where programmers edit the code, the
corresponding prompt blocks, including all blocks in the subtree
containing that segment of code, are updated to ensure subsequent
operations consider the manually modified code.

In addition to block-based operations, the Semantic Highlighting
feature follows a process where it initially segments utterances
and pairs them with corresponding code segments. Subsequently, it
prompts LLMs to assess the similarity between selected utterances
and code segments in comparison to other pairs of utterances and
code (Appendix ??). A relevance score is determined based on the
cosine similarity of text embeddings, and it is further categorized
using named entity recognition with a predefined set of entities
(e.g., dataset, preprocessing, and variable).

6 EVALUATION
We conducted a study involving 12 experienced and frequent LLM-
based code assistants programmers to assess the efficacy of CoLad-
der in addressing the following Research Questions (aligned with
the A-D in Fig. 2):
• RQ1:Whether and how CoLadder supports programmers in their

intention formation and externalization process?
• RQ2: Whether CoLadder provides programmers with control

when translating intentions into generated code?
• RQ3: Whether and how CoLadder reduces context switching

between prompt authoring and results evaluation?
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Figure 8: Programmers can select a phrase within the prompt, and the system will highlight correlated phrases throughout the
tree structure and code segments. Colours are used to represent the entity type, while opacity indicates the correlation score.

• RQ4:Whether CoLadder enhances prompt-code correspondence
for programmers to evaluate generated code?

6.1 Participants
We recruited 12 participants (7 males, 5 females; ages 23 − 36, 𝑀 =

26, 𝑆𝐷 = 3.54) through purposive sampling [23] via the university
mailing list. We selected experienced programmers with Python
proficiency scores of 4 or higher on a 1 to 5 scale [77, 88]. This
choice is because experienced programmers can better construct
mental representations of programming solutions compared to
novices, who often struggle to connect code segments with their
intended goals [27, 36, 69, 84]. Novices may find it challenging to
fully utilize CoLadder, which requires externalizing and matching
intentions with code when their intentions are not well-formed.
Furthermore, we screened participants based on their familiarity
with LLM-code assistants, particularly with GPT-4, using a self-
assessed rating on a 5-point Likert scale. This step was taken to
ensure that our participants have a solid understanding of the
capabilities of the language model we utilized and are experienced
in crafting effective prompts. The final 12 participants we recruited
for the study are experienced programmers (𝑀 = 7.88, 𝑆𝐷 = 4.34
years) and confident in Python programming (score𝑀 = 4.42, 𝑆𝐷 =

0.51). They also regularly use LLM-code generation tools (𝑀 =

8, 𝑆𝐷 = 2.56 times/week) and self-reported being familiar with
them based on a 5-point Likert scale (score𝑀 = 4, 𝑆𝐷 = 0.74).

6.2 Programming Tasks
To select tasks for our study, we applied three criteria: 1) Time:
We aimed for tasks that could be completed within 12-15 minutes
to minimize participant fatigue; 2) Question Type: We focused on
tasks that required participants to perform specific actions, ex-
cluding queries about language features or package installations;
3) Complexity: Tasks needed to be complex enough to prevent
GPT-4 from generating complete solutions, forcing participants
to form intentions for problem-solving and evaluation. We drew
inspiration from programming tasks used by Xu et al. [88] and
Vaithilingam et al. [77], sourced from Stack Overflow and catego-
rized into seven common programming task types (Table 3). We

selected medium to high-difficulty categories and asked partici-
pants to self-rate their expertise in these categories on a 5-point
Likert scale during screening, with a threshold of a rating above
3 for category selection. Based on participants’ ratings, we chose
Machine Learning (score 𝑀𝑑𝑛=4, 𝜎=1.19) and Data Visualization
(score 𝑀𝑑𝑛=4, 𝜎=0.75) as study categories. We adapted tasks to
meet our complexity criteria, refining them through discussions
and testing. After a pilot study with two participants, we finalized
two tasks in each category (Appendix C.2). These tasks featured
indirect, verbose descriptions [52], presented in picture format to
prevent direct copying, and re-ordered requirements to encourage
independent planning.

6.3 Baseline and Apparatus
In addition to CoLadder, we implemented a Baseline with which to
compare CoLadder. Baseline is a web-based code editor that gener-
ates code based on inline comments, similar to GitHub Copilot [30].
We designed the Baseline to closely resemble the code editor that
participants are familiar with, allowing them to craft prompts based
on their own experiences freely. Participants have the freedom to
write, edit, and compile code within the Baseline environment. In
Baseline, code suggestions are automatically generated and appear
as grey text after the cursor position when users pause typing.
Users can choose to accept these suggestions by pressing the tab
key or ignore them and keep typing. It is important to note that
both Baseline and CoLadder are powered by GPT-4 to maintain a
fair comparison. Instead of creating a new system, this Baseline
allows for a meaningful comparison between their individual expe-
rienced workflow and CoLadder. Both systems are web applications
accessible on all operating systems and web browsers. Participants
had the option to join either in-person or remotely via Zoom, the
video conferencing platform.

6.4 Procedure
We chose a within-subjects design to compare CoLadder and Base-
line. Each study session lasted about 60-75minutes, and participants
were compensated with CAD$30. The study was approved by the
university’s ethics review board. We began the study by giving the
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Q1: Reduces Cognitive Switching
Q2: Understanding of How System Works

Q3: Ability to Steer System
Q4: Helps Construct Mental Model

Q5: Scaffold Intents
Q6: Satisfaction with Suggestions

Q7: Confidence in Correctness
Q8: Understanding of Generated Code

Q9: Helps Verify Generated Code
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Figure 9: User perception of utility of Baseline and CoLadder, measured on self-defined 7-point Likert scales (Appendix C.3.3).

participant an overview of the study procedure. Participants com-
pleted a consent form and a pre-study questionnaire that collected
their demographic information and education level. Each partic-
ipant was allocated to one of two distinct task categories, which
included machine learning and data visualization. To prevent par-
ticipants from simply copying and pasting the questions into the
editor, we presented the assigned tasks as screenshots rather than
text. Every participant completed two Python programming tasks
based on their assigned category, one using CoLadder and the other
using Baseline. Participants were assigned to tasks and categories
using a Latin square design, ensuring an equal distribution of each
condition (baseline or system) across participants and counterbal-
ancing all task-category combinations.

Before each task, participants received a tutorial on both CoLad-
der and Baseline, followed by a 5 − 10 minute practice session for
each condition. Participants then had up to 12 minutes to attempt
each task within the assigned category. Participants determined
the completion of the task based on their satisfaction and judgment.
If they finished a task early, they would notify the experimenter to
proceed to the next task. Participants received incentives (CAD$5) if
they correctly met all the criteria specified for the tasks. They were
also asked to think aloud while completing the task [28]. After each
task, participants completed a post-task questionnaire evaluating
the usability and utility of CoLadder and Baseline. Usability was
measured using the UMUX-LITE scale, which is directly related to
the SUS score [46], and the NASA-TLX scale for perceived cognitive
load [33] (Appendix C.3.1). Utility was measured using self-defined
Likert scale items (Appendix C.3.1). In the end, we conducted a
semi-structured interview to gain participants’ insights about both
CoLadder and Baseline and to understand their behaviour during
the task. Additionally, we recorded participants’ screen activity
and later played it back to assist them in recalling and explaining
their observed behaviours during the task after the recall test. Both
CoLadder and Baseline logged various types of events based on par-
ticipants’ interactions across the timeline, including code editing,
prompt authoring, and prompt editing.

6.5 Data Analysis
We transcribed the think-aloud data and post-study interviews for
all participants. Subsequently, we analyzed these transcriptions

using reflexive thematic analysis [11]. Our approach combined
inductive and deductive methods to identify codes and themes,
with a particular emphasis on participants’ intention formation
processes and editing experiences. The initial analysis involved
the first two authors collaborating to group codes into broader
categories related to prompt and code editing behaviors, and any
disagreements were resolved by revisiting the interview transcripts.

We conducted statistical analysis on the comparative survey
data by comparing responses between the Baseline and CoLadder
conditions using the Wilcoxon signed-rank test, given the ordi-
nal nature of Likert-scale responses and the small sample size. In
the upcoming sections, we will present the data in the following
format: (Qquestion number if come from questionnaire: MedianCoLadder vs.
MedianBaseline , 𝑝-value, 𝑟=effect size). Furthermore, prompts col-
lected from participants’ logs were classified into procedural, declar-
ative, andmixed block types across multiple layers. Two researchers
coded the data collaboratively, achieving an initial inter-coder agree-
ment of 97%, which was iteratively refined to 100%.

7 FINDINGS
Our results highlight the usefulness of CoLadder in facilitating
programmers to flexibly decompose their tasks, and scaffold their
intentions into code across multiple levels of abstraction through
hierarchical generation. We present a detailed qualitative analysis
and system log data corresponding to the four Design Guidelines
and Research Questions.

7.1 General Impression
7.1.1 Self-Perceived Task Completion and Completion Time. Based
on participants’ self-evaluation, similar numbers of participants
completed the tasks in two conditions (7/12 for CoLadder and
6/12 for Baseline). However, on average, participants took signifi-
cantly more (𝑝 = .040) time to complete tasks with CoLadder (𝑀 =

11.74, 𝑆𝐷 = 0.50 min) compared to Baseline (𝑀 = 10.05, 𝑆𝐷 = 2.79
min). The detailed time distribution in Figure 10 reveals that two
participants spent less than 7 minutes in Baseline condition. This re-
sult does not come as a surprise to us, as our goal was to encourage
programmers to allocate more time to planning and articulating
their intentions and prompts. The qualitative insights from the
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Figure 10: Distribution of time spent on tasks for each
participant in both conditions.
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Figure 11: Frequency distribution of distinct block types across five
layers in the prompt tree structure, with shaded areas representing
standard deviation and error bars indicating 95% confidence intervals.

recall test will discuss the reasons for this outcome and explain
why this is not a disadvantage for Baseline (Section 7.4.2).

7.1.2 Task Correctness. We compiled participants’ code after the
study to validate if they correctly met all the specified criteria.
With Baseline, a higher proportion of tasks (50.0%) remained in-
complete, while with CoLadder, this percentage was slightly lower
(41.67%). The CoLadder condition showed a higher rate of tasks that
were both completed and correct (50.0%) compared to the Baseline
condition (25.0%). Notably, more tasks were completed but found
to be incorrect using Baseline (25.0%) compared to the CoLadder
condition (8.33%).

7.1.3 Satisfaction and Confidence. Compared to Baseline, partic-
ipants found that when using CoLadder, they were more satis-
fied with the suggestions of the system (Q6:𝑀𝑑𝑛𝐶=6 vs.𝑀𝑑𝑛𝐵=4,
𝑝=.028, 𝑟=.35) . However, while there was an increase in the median
confidence level regarding the correctness of the system-generated
code, this increase was not statistically significant compared to
the baseline condition (Q7: 𝑀𝑑𝑛𝐶=5 vs. 𝑀𝑑𝑛𝐵=4, 𝑝=.58, 𝑟=.16) .
These results suggest that CoLadder had no significant impact on
participants’ perception of the model’s accuracy, but it did lead to
generated results that were more closely aligned with their inten-
tions.

7.1.4 Usability (UMUX-LITE). To measure the usability of CoLad-
der, we computed the SUS scores based on the UMUX-LITE. The
average SUS scores were significantly greater (𝑝 = .02) for CoLad-
der (Mdn = 90.61), compared to Baseline (Mdn = 68.94). Typically, a
SUS score above 70 is considered “acceptable” and one above 85
“excellent” [6]. This indicates that CoLadder has good usability and
is much more usable than Baseline.

7.1.5 Perceived Cognitive Load (NASA-TLX). We also used NASA-
TLX to measure the perceived workload associated with each sys-
tem. Compared to Baseline, CoLadder had lower mental (Mdn =

3.0 < 4.5, 𝑝 = .10), physical (Mdn = 1.0 < 2.0, 𝑝 = .08), and
temporal (Mdn = 3.0 < 4.5, 𝑝 = .16) demand, required less ef-
fort (Mdn = 3.0 < 4.5, 𝑝 = .39), and led to better performance
(Mdn = 6.0 > 5.0, 𝑝 = .11) and statistically significantly less frus-
tration (Mdn = 2.0 < 5.0, 𝑝 = .04). The overall perceived workload,
obtained by averaging all six raw NASA-TLX scores (with the “Per-
formance” measure inverted), was also lower for CoLadder than
Baseline (Mdn = 2.33 < 3.75, 𝑝 = .11). Thus participants found

CoLadder to be less taxing to use compared to Baseline, though this
difference was not statistically significant.

7.2 Intention Formation and Externalization
(RQ1)

Participants felt the prompt tree structure of CoLadder significantly
helped construct their intentions for solving the programming task
compared to Baseline (Q4:𝑀𝑑𝑛𝐶=6 vs.𝑀𝑑𝑛𝐵=2.5, 𝑝=.008, 𝑟=.76) .

7.2.1 Various Prompt Types are Used in Different Layers. Every
participant constructed a prompt tree with at least 2 layers (𝑀𝑑𝑛 =

4, 𝑆𝐷 = 1.17 layers), leveraging the prompt tree as an external-
ization of their mental task structure. As P2 mentioned, “the tree
structure clarifies my approach both in solving the task and in guiding
the model to generate the desired code.” Figure 11 shows that the
declarative type of prompt blocks (i.e., what tasks to be done) de-
crease as the number of layers increases. This suggests participants’
preference for specifying declarative knowledge in the first three
layers. Conversely, the procedural type (i.e., the how-to of the task)
appears less frequent at first but exhibits an increase in the third
layer, indicating an increase in procedure-oriented prompts as the
layers progress.

7.2.2 Strategies for Structuring Prompt Tree. Participants mostly
(11/12) structured their prompts to horizontally map to the task
structure through indentation (e.g., tasks to sub-tasks), while also
aligning the order of prompts vertically with the structure of the
generated code. P6 elaborated: “I prioritize defining the overall task
structure, using child blocks to differentiate sub-tasks [...] and will ad-
just the code structure later on based on its execution sequence.” While
the flexibility of CoLadder allows free-form prompt structuring, our
observations revealed two major workflows (Fig. 12):
1. Breadth-First Structure: Participants (4/12) outlined all pri-

mary tasks first and subsequently delved into the finer details by
adding sub-tasks (or Supplements). Before moving to sub-tasks,
they utilized the List Steps feature to evaluate how the code
is being implemented. This result is similar to the top-down
decomposition method leverage for code comprehension [27].

2. Depth-First Structure: Participants (7/12) addressed all sub-
tasks within a main task before moving on to the next primary
task. Participants with a well-defined intention beforehand were
more inclined to adopt this approach, leveraging the List Steps
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https://app.eraser.io/workspace/TqE4R7TzxVc9ms8v0AG2

Figure 12: Participants typically initiate their workflow by externalizing their intentions through either a Depth-First Search
(DFS) or Breadth-First Search (BFS) approach. Subsequently, CoLadder generates code structured in alignment with their carefully
crafted task structure. Following code generation, participants proceed with block-based operations, supplement additions,
and, in some cases, modify higher-level prompts to regenerate the code. Participants using CoLadder typically evaluate and
compile the code at the final stage, whereas those in the Baseline condition often need to evaluate and compile code more
frequently throughout the process.

feature as a “cross-validation mechanism” - P8 to ensure the gen-
erated code aligned with their specified sub-tasks. This approach
is similar to the stepwise refinement in program design [27].
Without the prompt tree structure, participants using Baseline

typically faced two challenges. First, some participants (4/12) spent
a significant amount of time mapping out the task to code, often
constructing a lengthy section of comments that included all the
steps required to approach the task. This approach required them
to “think about the code in very detail first.” - P2 On the other hand,
most participants (8/12) developed their intention while authoring
the prompt by adding more context to the prompt to adjust the
output. Participants reported that using the linear representation
of prompts “could not fully express their thoughts.” - P4 While two
participants constructed a layered prompt as discovered in the for-
mative study, they did not use it as the prompt for code generation.
Instead, they utilized it to establish the overall context and then
proceeded to refine their prompts in a more detailed manner during
the code-writing process.

In summary, participants using CoLadder with both approaches
found that the tree structure encouraged them to “contemplate the
implementation of the code layer by layer,” - P5 alleviating the “cogni-
tive burden of thinking about the entire code structure beforehand.” -
P11

7.3 Controlled Scaffolding from Intention to
Code (RQ2)

After externalizing their intentions through the prompt tree, partic-
ipants proceeded to evaluate the results and made edits to prompts
and code as needed. Overall, participants found CoLadder to be
more helpful in scaffolding their intentions to generate the desired
code (Q5:𝑀𝑑𝑛𝐶=6 vs.𝑀𝑑𝑛𝐵=3.5, 𝑝=.007, 𝑟=.77) compared to the
Baseline.

7.3.1 Editing Prompts before Code. We observed that participants
typically began code evaluation after drafting the prompt tree struc-
ture. P6 explained, “The generated code will not be accurate unless I
provide details [e.g., by adding child blocks, Supplement operation].”
Participants typically edit prompts first instead of modifying the
generated code when using CoLadder (Fig. 13). P9 explained that
the reason for adjusting prompts in CoLadder is “not because it
generates the wrong code, but to adjust my approach for solving the
task [intention].” Analysis of the log data (Fig. 13) revealed that
participants made significant code edits in the latter third of their
work when using CoLadder. Participants mentioned that they felt it
was more like “maintaining a document” - P4 and “fully noting my
thought process” - P1 rather than engaging in prompt engineering,
as was the case in the Baseline condition.

7.3.2 Block-based Operations Help in Prompt Editing. As depicted
in Figure 14 Left, participants in the Baseline condition tended to
manually edit the code significantly more than in the CoLadder con-
dition (𝑀𝑑𝑛=8.0 vs.𝑀𝑑𝑛=53.0, 𝑝=.002, 𝑟=0.9). This finding aligns
with the observation that they only edited the code towards the end
when using CoLadder. However, there is no significant difference in
the amount of prompt editing (𝑀𝑑𝑛=7.0 vs.𝑀𝑑𝑛=8.0, 𝑝=.72, 𝑟=0.08),
suggesting that block-based operations (as shown in Fig. 14 Right)
may reduce the necessity for code editing. Participants found these
block-based operations to be more “intuitive” and “direct” ways to
modify the generated code compared to directly editing through
text. Participants highlighted the block-based operations (e.g.,DnD)
could help them focus more on structuring prompts, “I love the drag
and drop feature, which allows me to structure the code freely based
on my mental model without concerns about the code’s structure.” - P7

7.3.3 Modular-based Design Enhance Controllability. Participants
reported that they could steer CoLadder more controllably towards
the task goal (Q3:𝑀𝑑𝑛𝐶=6 vs.𝑀𝑑𝑛𝐵=3.0, 𝑝=.007, 𝑟=.77) with the
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Figure 13: A scatter plot displays events occurring throughout normalized time, synthesized from all participants. In Baseline,
code editing is spread throughout the workflow, while with CoLadder, participants tend to edit code in the later stages.

“step-by-step approach” - P6. When comparing the authoring pro-
cesses in both systems, participants (11/12) felt that CoLadder pro-
vided themwithmore controllability while modifying the generated
code from prompts. Participants found that the modular-based de-
sign (i.e., prompt blocks) allowed them to focus on one segment of
code at a time, which prevented them from “getting lost while veri-
fying the generated code.” - P2 Participants could also easily identify
where to add prompt blocks because they “only need to ensure that
the high-level task structure is correctly ordered, without having to
search through the code to find the exact position.” - P1 They found it
useful for modifying the targeted code segments, “without worrying
about affecting other sections.” - P4 Participants also found that the
tree structure assisted them in identifying where to modify the code
more easily compared to Baseline. “It’s simpler to make changes to
the code [with CoLadder] when there’s an error. [...] I can modify the
parent level and the changes will be reflected in all child blocks as
well.” - P8

7.4 Results Evaluation during Prompt
Authoring (RQ3)

Compared to Baseline, participants found that CoLadder signifi-
cantly reduced the need for cognitive switching between prompt
authoring and code evaluation (Q1:𝑀𝑑𝑛𝐶=6.0 vs.𝑀𝑑𝑛𝐵=4.5, 𝑝=.01,
𝑟=.67) .

7.4.1 List Steps, Auto-Complete, Recommendation Enhancing Inten-
tion Alignment Evaluation. All participants experimented with the
List Steps feature in CoLadder (Fig. 14 Right), primarily to “assess
generated code alignment with [their] intents.” - P9 P2 explained, “If
the steps are correct, I am confident the code will be too.” This ap-
proach was similarly adopted with the Recommendation feature
and Auto-Complete features (Fig. 14 Right); participants mostly uti-
lized them “as a cue to see if the system captured my intent” - P8.
Specifically, participants leverage recommendations to evaluate the
alignment between their intents and the system’s comprehension,
rather than accepting the recommendation as the next prompt.
Without these features in Baseline, participants have to manually
identify specific changes in the code segments corresponding to
their prompt modifications by “comparing the previous and current
generated code.” - P7 Overall, the purpose of evaluating the code for
participants using CoLadder was to modify their prompts, but not
to evaluate the correctness of the generated code.

7.4.2 Improved Recall Performance after Participants Using CoLad-
der. Despite the reduced need for frequent code evaluation, par-
ticipants using CoLadder demonstrated a significantly better un-
derstanding of their programs compared to using Baseline (Q8:
𝑀𝑑𝑛𝐶=6.0 vs. 𝑀𝑑𝑛𝐵=5.0, 𝑝=.007, 𝑟=.77) . A recall test was con-
ducted to investigate participant code comprehension [22]. Partici-
pants could recall code implementation systematically after using
CoLadder, from higher-level (e.g., the purpose of the task) to lower-
level code implementations with details in each step. P11 explained
the reason, “the system [CoLadder] helped me think through the pro-
gramming task already when I was drafting prompts.” P9 added, “I
do not need to spend time on comprehending code, as I have already
verified segments of code corresponded to each prompt before.” In
contrast, in Baseline, participants started with detailed codes and
gradually summarized and mapped the task steps. This result can
also be attributed to CoLadder’s support in intention formation and
externalization compared to the Baseline. This trade-off in terms of
time efficiency aligns with our previous finding that using CoLadder
was slower than Baseline (Section 7.1.1). Participants tended to in-
vest more time in structuring clear intentions in their minds, which
aids them in evaluating the code with greater ease and reduces
cognitive load.

7.4.3 Transitioning from Opportunistic Programming to Compre-
hensive Code Understanding. We observed from Figure 14 that par-
ticipants compiled the code (i.e., compile error and compile) signifi-
cantly more in Baseline compared to the CoLadder (𝑀𝑑𝑛=24.0 vs.
𝑀𝑑𝑛=18.5, 𝑝=.012, 𝑟=0.56), which was used as an alternative ap-
proach for “verifying the generated code.” - P12 P1’s strategy in using
Baseline was to “try to compile the code to see if it works,” without
the need to evaluate the generated code. Participants in the Baseline
condition compiled the code throughout the session, whereas par-
ticipants in the CoLadder condition tended to compile the code at a
later stage (Fig. 13). While this approach might increase the overall
completion time, participants using this opportunistic approach in
Baseline faced challenges to modify the code when compiled results
were incorrect, where they “had to check by cross-referencing task
descriptions and generated code.” - P1

7.5 Enhancing Prompt-Code Correspondence
(RQ4)

Participants navigated across various layers of prompt blocks and
noted that CoLadder significantly enhanced their ability to evaluate
generated code (Q9: 𝑀𝑑𝑛𝐶=6.0 vs. 𝑀𝑑𝑛𝐵=3.0, 𝑝=.006, 𝑟=.80) in
comparison to Baseline.



Ryan Yen, Jiawen Zhu, Sangho Suh, Haijun Xia, and Jian Zhao

0 10 20 30 40 50 60

Auto-Completion

Edit Code

Edit Prompt

Compile Error

Compile

0 5 10 15 20 25 30 35

Operation

Navigation

History

Recommendation

List Steps

Supplement

Baseline CoLadder

Figure 14: Comparison of event counts between Baseline and CoLadder.

7.5.1 Enhancing Navigation and Precise Modification through Corre-
sponding Code Highlight in Modular-Based Approach. Participants
found it more effective to navigate and make precise modifica-
tions with CoLadder as they could adopt a modular approach. They
could evaluate code in segments with the code highlight feature,
which “reduced cognitive load.” - P4 Folding and presenting different
segments of code depending on the structure of the task allows pro-
grammers to “more easily control the depth of verification required.” -
P6 Some suggested that having a structural intention formed before-
hand allowed them to “swiftly locate the segments needing changes.” -
P8 We observed that most participants (10/12) do not evaluate the
entire program but evaluate them segments by segments, as they
do not worry about the “possibility of the LLM incorrectly concate-
nating my [their] code or using different variable names.” - P11 Par-
ticipants in the Baseline condition, on the other hand, encountered
difficulties in identifying differences from the integrated prompt.
The majority of participants (9/12) expressed frustration with the
time-consuming process of “constantly verifying the same code,” - P7
which at times led them to opt for directly modifying the code. P5
further reported the challenges of not knowing whether all their
intentions were effectively conveyed to Baseline and not being able
to discern “which prompts were attributed to incorrect results.”

7.5.2 Facilitating Detailed Code Evaluation with Semantic Highlight
and Mixed Methods Writing. As the prompt blocks increased, partic-
ipants valued the Semantic Highlighting feature that simplified the
linkage between the task and its corresponding code. The majority
(10/12) felt that the Mixed Methods writing feature accelerated the
evaluation process by checking “if the keyword is showing in the
right place as [they] thought.” - P2 While some participants (4/12)
added code syntax to the prompt when using Baseline. They did
so primarily as an intervention method when the generated code
consistently produced errors, rather than as a means to facilitate
the evaluation process. We also observed that participants preferred
the use of inline keywords (e.g., read_csv(), sns.pairplot()) rather
than multi-line code when drafting prompts, where they could “eas-
ily identify and track changes” - P11 across multi-level abstractions.
Figure 11 displays the count of prompt blocks written with mixed
methods, ranging from the first to the maximum layer. Interestingly,
participants tended to embrace mixed methods in the later layers,
considering them to be the form closest to the generated code.
While most participants used mixed methods to reflect their inten-
tions, one participant explained the advantage of employing mixed
methods in the final layer because “it is the nearest [in distance] to
the generated code [on the right-hand side].” - P7

8 LIMITATIONS
Our primary limitation is associated with the diversity of program-
ming tasks evaluated and the constraints of prompt programming.
Some open-ended programming tasks, particularly those focused
on rapid iteration (e.g., exploratory programming, exploratory data
analysis) [42, 76], tend to prioritize quick idea iteration over code
quality. Programmers often need to make swift, small changes, such
as adjusting parameters and variables [73, 90]. NL-based program-
ming may not be as effective in these cases, as programmers can
quickly modify specific parts of the code without waiting for code
generation. Despite the option to make direct code changes within
CoLadder, participants mainly focus on prompt authoring and incor-
rectly perceive that they “always have to refine the prompt to change
the code” - P6. Some participants (3/12) who had forgotten about
the bi-directional editing feature expressed a desire to be able to
directly modify the code within CoLadder, as they wanted to “adjust
some low-level code details directly [in CoLadder]” - P10. This finding
suggests that while CoLadder supports bi-directional editing, the
current design lacks clarity in indicating whether bi-directional
editing is functioning. Future design improvements should incor-
porate visual cues to inform participants when changes have been
recorded.

Another limitation of CoLadder is that the prompt tree structure
may not always align with the actual code structure. For instance,
while in the programmer’s intention, “plotting the loss curve” may
be considered a sub-task under “model evaluation”, it might ex-
ist within the global function scope in the generated code. While
we initially designed the separation of the user interface for the
prompt editor and code editor with consideration of this issue, two
participants mentioned that our system may be less effective in
certain programming languages or scenarios (e.g., Object-Oriented
programming [20] or complex projects with multiple files) where
the task and code structures can deviate significantly. We argue
that while the correspondence between prompts and code might be
less obvious, the highlight of the corresponding (DG4) and hierar-
chical generation could still be beneficial. This is in contrast to the
Baseline, where programmers would need to locate the generated
code and manually map it to the prompts.

We acknowledge the limitation of testing CoLadder exclusively
with scripting languages and recognize that certain programming
languages, particularly compiled languages, may face challenges
with existing features, such as compilation errors. However, our
design of CoLadder primarily emphasizes support for the intention
formation and externalization stages, arguing that the hierarchical
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mental representation (DG1) is broadly applicable across various
programming scenarios and languages [27, 36, 44]. The need for
scaffolding intentions with controllability (DG2) and reducing cog-
nitive switching (DG3) are also common challenges raised by prior
works in different programming settings [49]. Overall, while CoLad-
derwas primarily designed to tackle challenges in general NL-based
programming, we acknowledge the future need for designs more
tailored to specific programming tasks and languages. For example,
exploring the integration of visualizations such as class diagrams to
better convey program structures and relationships between classes
or components [32].

9 DISCUSSION AND FUTUREWORK
We discussed how CoLadder assists programmers in forming in-
tentions for programming tasks, differentiates controllability in
program and interaction with LLM, mitigates over-reliance issues,
and its potential applicability in both familiar and unfamiliar pro-
gramming tasks.

9.1 Intentions Formation & Development
The findings from our study demonstrate that CoLadder effectively
supports code generation at multiple levels of abstraction, thereby
assisting programmers in scaffolding their intent. This aligns with
existing literature on the challenges of understanding the capa-
bilities and limitations of language model-driven code generation
systems, as well as the need for clear and naturalistic input to gener-
ate specific code that matches the programmer’s intent [26, 52, 86]

Additionally, our findings resonate with prior research highlight-
ing the importance of programmers forming intentions of code at
different levels of abstraction [71], from specific code statements
to larger program structures [5, 89]. This underscores the need for
scaffolding useful intentions to facilitate interactions and collabo-
ration between programmers and LLMs in solving programming
tasks. In our work, we place a strong emphasis on assisting pro-
grammers in forming these intentions to craft effective prompts
that generate code aligning with their intentions [14, 87].

Our study highlights the role of CoLadder in aiding programmers
as they evolve their intentions throughout the problem-solving
process [56]. By offering hierarchical prompt structures and block-
based operations, CoLadder enables programmers to easily adapt
and refine their task representations as they gain deeper insights
into their programming tasks. This aligns with agile development
principles, fostering dynamic adjustments in problem-solving ap-
proaches [35].

9.2 Controlling Program or AI Interactions
In the context of programming with AI assistants, we discerned a
subtle distinction in controllability over the resulting program ver-
sus the process of scaffolding programmers’ intentions. The former
pertains to the ability to directly and manually edit the code, while
the latter involves translating decomposed intentions into prompts
and generated code. Three participants found it less intuitive to edit
the code in CoLadderwithout visual cues. This finding suggests that,
although CoLadder effectively enhances control over the intention
scaffolding process (RQ2), it may not necessarily improve control
over the program itself. However, we observed that participants

required less code editing when using CoLadder, especially in the
early stages. This reduction was attributed to participants having
alternative methods for easily modifying the generated code seg-
ments through block-based operations. While these operations may
not necessarily enhance control over the program, they do aid in ex-
ternalizing intentions and intuitive modifications. Future research
should explore two facets of controllability that are essential for
programmers: controllability in their interactions with AI [3, 37, 62]
and controllability over the program itself [31, 59].

9.3 Over-Reliance and Program Comprehension
In our findings, we observed a trend where programmers often
accepted the suggestions from the baseline code assistant and sub-
sequentlymodified the generated code. This observation aligns with
prior studies that have suggested the possibility of programmers de-
veloping an over-reliance on LLM-driven code assistants [7, 15, 88].
However, in the context of CoLadder, participants meticulously
crafted their programs step by step, demonstrating a deeper un-
derstanding of the overall programming structure. This approach
appeared to yield benefits in the recall test, as participants showed a
greater ability to comprehend the program they had constructed [56].

This finding raises intriguing questions about the potential im-
plications for future maintenance tasks. It prompts further inquiry
into whether the careful, step-by-step program crafting facilitated
by CoLadder might result in more maintainable codebases or offer
advantages in scenarios where long-term code comprehension and
modification are required [2]. Exploring these aspects in future
research could shed light on the effectiveness and sustainability of
CoLadder in addressing the over-reliance issue commonly encoun-
tered in human-AI interaction [3].

9.4 Experiences and Task Familiarity
We designed and studied CoLadder with experienced programmers
because they can form more well-defined intentions when address-
ing programming tasks compared to novices [17, 27, 35, 89]. How-
ever, we are also interested in how task familiarity might cause
differences among experienced programmers. According to our
pre-study questionnaire, all participants reported being familiar
with basic machine learning (𝑀 = 4.17, 𝑆𝐷 = 1.19) and basic data
visualization (𝑀 = 4.25, 𝑆𝐷 = 0.75) tasks in Python. We calculated
the Spearman correlation between self-perceived familiarity (on
a 5-point Likert scale) and the NASA-TLX and self-defined ques-
tionnaire responses. The correlation was weak1 for all items except
“Performance” (𝑟 = −0.348) from NASA-TLX, and “Understanding
of How System Works” (𝑟 = −0.447) and “Satisfaction with Sugges-
tions” (𝑟 = −0.327) from the self-defined questionnaire, which had
moderate correlations.

These findings imply that while participants’ prior familiarity
with specific programming tasks may have had some influence on
their perceptions, it was not a dominant factor. Potential future
research could investigate the impact of varying degrees of task
familiarity on the workflow when using CoLadder. In this work, we
focus on the significance of the overall programming experience, as
1As a general rule of thumb, a Spearman correlation below 0.3 is considered weak and
one between 0.3 − 0.6 is moderately strong.
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the ability to formulate effective intentions is crucial in the trans-
lation process to prompts with controllability and in determining
what aspects to evaluate.

10 CONCLUSION
In this paper, we present CoLadder, an interactive system that aids
programmers in code generation and evaluation. It achieves this
by providing hierarchical task decomposition, modular-based code
generation, and result evaluation during prompt authoring. Our
iterative design process uncovered strategies and programmers’
needs for externalizing intentions and translating them into NL
prompts for code generation. A user study with 12 experienced pro-
grammers further validated CoLadder, demonstrating its capacity
to enhance programmers’ ability to navigate and edit code across
various abstraction levels, from initial goal to final code implemen-
tation. Our work provides valuable design insights into the concept
of hierarchical generation for future LLM-driven systems.
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A PROMPT TEMPLATE

Figure 15: Prompt template for the block’s operation [Add] Figure 16: Prompt template for [Edit]
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Figure 17: Prompt template for [List Steps]

Figure 18: Prompt template for [Semantic Highlighting]
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B FORMATIVE STUDY MATERIALS

Sex Age Programming
Years

AI Familiar-
ity

Programming
Familiarity

Usage of LLMs
(times/week)

Languages Us-
age in LLMs

Tasks Usage in LLMs

Male 26 6 5 5 >19 Python, C#/C++,
JavaScript

Unfamiliar Code, Algorithm

Female 27 6 4 4 3–5 Python,
JavaScript

Unfamiliar Code, Boilerplate, API
Usage

Male 25 5 5 4 5–7 Python, Bash Unfamiliar Code, Debugging
Male 27 10 4 4 7–10 JavaScript, Java,

C/C++
Unfamiliar Code, Boilerplate, Code
Refactoring

Male 25 7 4 4 3–5 Python, Go, Rust Debugging, Code Refactoring
Male 25 6 5 5 3–5 Python, C#/C++,

JavaScript
Unfamiliar Code, Boilerplate, API
Usage

Table 2: Participants in the formative study used various programming languages and accomplished diverse tasks using the
LLMs.

C EVALUATION STUDY MATERIALS
C.1 Programming Tasks Categories

Category Tasks

Basic Python T1-1 Randomly generate and sort numbers and characters with dictionary
T1-2 Date & time format parsing and calculation with timezone

File T2-1 Read, manipulate and output CSV files
T2-2 Text processing about encoding, newline styles, and whitespaces

OS T3-1 File and directory copying, name editing
T3-2 File system information aggregation

Web Scraping T4-1 Parse URLs and specific text chunks from web page
T4-2 Extract table data and images from Wikipedia page

Web Server & Client T5-1 Implement an HTTP server for querying and validating data
T5-2 Implement an HTTP client interacting with given blog post APIs

Data Analysis & ML T6-1 Data analysis on automobile data of performance metrics and prices
T6-2 Train and evaluate a multi-class logistic regression model given dataset

Data Visualization T7-1 Produce a scatter plot given specification and dataset
T7-2 Draw a figure with three grouped bar chart subplots aggregated from dataset

Table 3: Overview of 14 programming tasks across 7 categories [88].
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C.2 Programming Tasks

Feature Selection and SVM Classification

The task at hand revolves around the concept of logistic regression, a statistical method revered

for its effectiveness in classification scenarios. Your journey here is not just about applying this

method, but mastering it, understanding its intricacies and how it interacts with the wine  dataset

from scikir-learn at hand.

A key aspect of your exploration involves the notion of regularization, a critical component in the

world of machine learning. It's a balancing act, where the regularization parameter 'c' plays a

pivotal role. Experimentation is the name of the game here, with values like {0.01, 0.1, 1, 10}, and

100 offering a spectrum of scenarios to explore.

Cross-validation, particularly the 5-fold variety, emerges as an integral part of your strategy. It's not

just about applying the model but validating it, testing its mettle against different segments of the

data. Also, apply lbfgs  as the optimization approach.

The culmination of your task is not merely in the application of these techniques but in the

synthesis of your findings. The cross-validation mean accuracy stands as a testament to your

model's performance, a numerical expression of how well your logistic regression model, fine-

tuned with the right balance of regularization, can classify and understand the nuances of the wine

dataset.

Expected Output Format:

Cross-validation average accuracies (up to 2 decimal places)

Cross-validation Accuracy (c = 0.01): 0.96

Figure 19: Machine Learning Task 1

Exploring Wine Quality Through Regression Analysis

In this task, your journey involves the wine dataset from scikit-learn, a resource rich in data yet

untapped for its potential in revealing insights into wine quality.

Consider the concept of quality  in the context of wine. Imagine encapsulating the essence of

quality as a singular value, derived from the mean of all 13 feature values in the dataset. This newly

crafted quality  metric becomes your target variable, a beacon guiding your analysis.

The dataset, in its entirety, is a canvas too broad for precise strokes. Hence, partitioning it into a

train set and a test set (with a 70-30 split) offers a more focused approach. This step is not just

about dividing data; it's about creating two realms – one for training your model and the other for

testing its predictions.

Your tool of choice for this expedition is the Decision Tree Regressor. But this is no ordinary

application of a regressor. You choose friedman_mse  as your criterion, a decision that adds a layer

of sophistication to how the model assesses quality. Similarly, opting for random  as the splitter

adds an element of unpredictability, mirroring the often unpredictable nature of wine quality itself.

The true measure of your journey's success lies in the evaluation of the trained regressor on the

test set. The predictions are held up against reality, and the model's understanding of quality  is

truly tested.

Your final act is one of communication – reporting the train and test accuracies, each a numerical

testament to the model's ability to learn and predict. These accuracies, precise up to two decimal

places.

Expected Output Format:

train and test accuracies on two separate rows

Train accuracy: 0.98
Test accuracy: 0.95

Figure 20: Machine Learning Task 2

Scatter Plot Exploration with the Iris Dataset

Conceptual Framework: Your canvas is the well-known iris  dataset from Scikit Learn, a dataset

that offers a fascinating glimpse into the characteristics of various iris flowers.

Visualization Objective: Your primary aim is to create a scatter plot, but not just a simple plot. This

scatter plot should vividly represent the relationship between sepal length and sepal width of iris

flowers. Each point in the plot is a story, representing an iris flower, with its sepal dimensions

providing the narrative.

Details and Nuances:

The x-axis of your plot will represent the sepal length, while the y-axis will display the sepal

width, both crucial measurements in the study of iris flowers.

The representation of data points is key: solid dots, each marking the presence of an iris flower

in this two-dimensional space.

Diversity in nature is best captured through color. Assign a unique color to each iris species,

making the plot not only informative but also visually appealing.

An interesting twist: arrange the points in ascending order of petal length along the x-axis. This

arrangement will reveal patterns and perhaps raise new questions about the relationship

between sepal and petal dimensions.

Finally, clarity in communication is essential. Include a legend in the lower right corner of the

plot, correlating each flower species with its designated color.

Outcome: Your scatter plot will be more than a visualization; it will be an insightful exploration of

the iris dataset, revealing the intricate relationships between different flower measurements.

Figure 21: Data Visualization Task 1

Visualization Task: Analyzing the Diabetes Dataset

Conceptual Framework: Your next visualization challenge involves the diabetes  dataset from

Scikit Learn, which offers a comprehensive view into the medical profiles of diabetes patients. The

dataset contains various health metrics, providing a rich field for analysis and visualization.

Visualization Objective: The task is to create a visualization that effectively communicates the

relationships and patterns within the diabetes dataset. This dataset isn't just a collection of

numbers; it's a window into the health dynamics of individuals with diabetes.

Details and Nuances:

Your goal is to design a visualization that:

Highlights the relationship between BMI (body mass index) and the quantitative measure of

disease progression.

Utilizes a heatmap to display the correlation between all variables in the dataset, including the

target variable.

Creates a histogram for one of the serum measurements (of your choice) to analyze its

distribution among the patients.

Specific Requirements:

BMI vs. Disease Progression Plot:

X-axis: BMI

Y-axis: Quantitative measure of disease progression

Points: Represent individual patients

Additional Element: Add a line of best fit to understand the general trend

Heatmap for Correlations:

Display correlations between all variables

Ensure the heatmap is color-coded for better readability

Include values in each cell for precise understanding

Histogram for a Serum Measurement:

Choose any one of the serum measurements

X-axis: Serum measurement values

Y-axis: Frequency of patients

Feature: Include mean and median lines on the histogram

Figure 22: Data Visualization Task 2
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C.3 Questionnaire
Below, we list the questions we used in the evaluation study questionnaire.

C.3.1 UMUX-LITE.

1. This system’s capabilities meet my requirements.
2. This system is easy to use.

C.3.2 NASA-TLX.

1. How mentally demanding was the task?
2. How physically demanding was the task?
3. How hurried or rushed was the pace of the task?
4. How successful were you in accomplishing what you were asked to do?
5. How hard did you have to work to accomplish your level of performance?
6. How insecure, discouraged, irritated, stressed, and annoyed were you?

C.3.3 Self-Defined Likert Scale Items.

1. The system reduces the need for cognitive switching between editing and validation.
2. I had a good understanding of why the system generates such results.
3. I could steer the system toward the task goal.
4. The system helps construct a mental model for solving the task.
5. The system helps scaffold my intents to generate desired code.
6. I’m satisfied with the overall suggestions from the system.
7. I am confident that the system generated the correct code.
8. I understand what my program is about, and how it works.
9. The system helps me verify the generated results.
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