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Figure 1: Code shaping usage example: (a) a programmer draws an arrow from a few lines of code defining data attributes to a
sketch of a bar chart in whitespace near the code, then they add another arrow back to a different code location and annotate
the arrow with ‘def’; (b) an AI model uses the code and the overlaid sketches to insert a new function to plot that data; (c) the
programmer reviews the edits interpreted by the model, then they run the program; (d) the code outputs a rendered plot, the
programmer sketches on top of it to indicate it should use min-max scaling; (e) the model examines the new sketches and
modifies the code to implement scaling.

ABSTRACT
We introduce the concept of code shaping, an interaction paradigm
for editing code using free-form sketch annotations directly on
top of the code and console output. To evaluate this concept, we
conducted a three-stage design study with 18 different program-
mers to investigate how sketches can communicate intended code
edits to an AI model for interpretation and execution. The results
show how different sketches are used, the strategies programmers
employ during iterative interactions with AI interpretations, and
interaction design principles that support the reconciliation be-
tween the code editor and sketches. Finally, we demonstrate the
practical application of the code shaping concept with two use case
scenarios, illustrating design implications from the study.

1 INTRODUCTION
In programming tasks, text is not always the primary medium for
expressing ideas [27]. Programmers often turn to sketching on
whiteboards and paper to externalize thoughts and concepts [10, 35,
64]. This includes tasks like designing program structure, working
out algorithms, and planning code edits [10, 46, 60]. The informal
nature of sketching helps untangle complex tasks, represent abstract
ideas, and requires less cognitive effort to comprehend [10, 14, 63].

Prior research has explored programming-by-example systems
that transform sketches [39], such as diagrams [17], mathematical
symbols [28, 55], and user interfaces [24, 25, 51], into functional pro-
grams. However, these systems often target non-programmers, with

the generated code typically hidden or not intended for direct edit-
ing. For programmers, another line of research has enhanced cur-
rent integrated development environments (IDE) with sketch-based
annotation features from the engineering perspective to support
note-taking [9, 61], facilitate collaboration [30], and aid in planning
future code edits [53]. Despite these advancements, sketching and
code editing are still largely treated as separate activities in the
software development process.

This division stems from the traditional view of programming as
primarily text-based [2], with sketching seen as an auxiliary tool.
Programmers must switch contexts between sketching and coding,
potentially losing insights during the translation from visual ideas
to code modifications [13, 45, 46]. This challenge is exacerbated by
the non-linear and dynamic nature of programming, where code
is frequently revisited and revised in response to evolving require-
ments and new discoveries. Hence, sketches have been primarily
considered as a static external representation of the programmer’s
thoughts instead of ways to interact with code [9, 47, 61].

To address this separation, we propose a sketch-based editing
approach where a programmer draws free-form annotations on and
around the code to iteratively guide an AI model in modifying code
structure, flow, and syntax: a concept we call code shaping. For exam-
ple, to insert a function to visualize data, a programmer can circle
lines of code related to data attributes, draw an arrow to a sketch
of a graph, then draw another arrow with the word “def” back to a
line of code to insert the function (Figure 1a,b,c). Further iterations
of sketching can revise the function name or specify additional
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data processing steps (Figure 1d,e). This approach tightly integrates
free-form sketching with realtime code editing both visually and
operationally, providing programmers with an alternative modality
to express modifications. This approach allows programmers to
encapsulate their expectations for the program’s functionality and
link these sketches directly to syntactic code. However, challenges
such as model interpretation errors due to the inherent ambiguity of
sketches [1, 16] and the fundamental differences between sketching
and coding modalities require further design exploration.

We adopted a user-centered design process with 18 programmers
using a prototype system probe that implements the code shaping
concept. Our findings reveal the types of sketches programmers
created, their strategies for correcting AI model errors, and design
implications for bridging the conceptual gap between the canvas
where sketches are made, the textual code representation, and the
AI models. We demonstrate these design implications with two
real-world use cases: a productivity break using a tablet and pair
programming at a whiteboard. The contribution of this research
is not to claim that code shaping is superior to other interaction
paradigms, such as typing, but to establish it as a viable alternative
that empowers programmers to iteratively express and refine their
code edits through free-form sketches.

2 RELATEDWORK
Historically, the practice of writing code has evolved significantly
alongside the development of different tools and technologies. Early
methods relied on handwritten and drawn notations, reflecting the
material and cultural contexts of their time [2]. The advent of the
typewriter marked a pivotal shift, standardizing typed input as the
dominant mode for programming. However, multiple explorations
into alternative, keyboard-less methods of code manipulation have
been conducted. Research has investigated the use of gestures [38],
touch inputs [46, 49, 62], and voice- or speech-based input [4, 11]
for programming. These studies demonstrate a consistent effort to
move beyond traditional text-based coding by leveraging different
interaction modalities to make programming more accessible.

These studies demonstrate a consistent effort to move beyond
traditional text-based coding by leveraging different interaction
modalities to simplify and enhance the coding experience. The
advent of large language models (LLMs) marks another paradigm
shift in the way code is written. With capabilities for code gen-
eration and completion from natural language, LLMs have made
the long-envisioned concept of literate, unstructured, and natural
programming more feasible [8, 23, 65]. The use of LLM-driven code
assistants is transforming programming workflows, as developers
increasingly transition from writing code manually to critically
evaluating and refining AI-generated code [5, 37]. While the key-
board remains a central tool, advancements in computer vision
and speech recognition are expanding the possibilities of program-
ming, allowing for diverse and multimodal forms of code input
and manipulation [21, 48]. Among these modalities, sketching has
attracted significant attention as a flexible and expressive method
for generating code.

2.1 Generate Code from Sketches
Prior work has explored the transformation of sketches into code
to facilitate rapid prototyping and early-stage design. Tools like
SILK [25, 26] enable designers to sketch UI elements electronically,
turning them into interactive prototypes, thereby supporting flexi-
ble sketching and demonstrating the effectiveness of sketch-based
methods for generating functional UIs. DENIM [31] extends this
approach by offering a zoomable user interface that supports web
design sketches across multiple levels of detail, from high-level
site maps to specific page elements. Other tools, such as Eve [59],
provide a comprehensive sketch-based prototyping workbench
that facilitates transitions between low, medium, and high-fidelity
prototypes, ultimately generating executable code. More recent
approaches, like pix2code [7] and Microsoft’s Sketch2Code [24],
leverage deep learning and computer vision techniques to convert
GUI sketches into code for multiple platforms. Although these tools
demonstrate the utility of sketches in generating code, they pri-
marily focus on sketching the program output and transforming
them into code, rather than using sketches as a direct manipulation
method for editing code.

Further, these sketches often exist in separate mediums from the
code, and sometimes the code might not even be shown alongside
them [51]. This separation makes direct visual-to-code mappings
challenging [10] since code is inherently abstract without definitive
representation. This often results in sketches being transient, as
they are attempts to translate fluid visual representations into the
structured syntax required by code [56]. The temporary nature
of these sketches highlights the difficulty in maintaining a clear
mapping between visual sketches and syntactic code structures.
Arawjo et al. [3] introduced notational programming, which in-
tegrates small canvases containing handwritten notations within
code cells of computational notebooks, showing an initial effort to
merge sketches and code. However, this approach maintains only
an implicit connection between code and sketches, limiting explicit
linkage between handwritten symbols and their textual equiva-
lents. In contrast, our proposed concept, code shaping, goes be-
yond both notational programming and programming-by-example
approaches[39]. It enhances the linkage between sketches and code
by allowing programmers to sketch directly on and around the code,
resembling a visual programming language. This enables visual
planning and referencing of future edits, fostering a more direct
and dynamic interaction between sketches and actual code.

2.2 Annotating and Planning Code with
Sketches

Programmers often use sketches, highlights, and external notes to
annotate code for better comprehension, resource tracking, progress
monitoring, and peer communication [34, 60]. Several systems have
been developed to support these annotation practices. For instance,
Synectic IDE [12] facilitates linking and annotating code files to as-
sist in programming tasks. However, for annotations to be effective,
they should be integrated directly into the code editor or positioned
close to the code to help programmers maintain their workflow [44].
Annotations lacking context from surrounding code can hinder un-
derstanding of their implications for future edits [34]. Systems like
Catseye have addressed this issue by enabling programmers to add
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contextually linked annotations alongside the code editor, serv-
ing as a note-taking tool [22]. However, Catseye’s annotations are
limited to typed textual notes linked to code snippets, lacking the
flexibility offered by freeform sketches. Recent research in software
engineering has focused on developing integrated development en-
vironments (IDEs) that allow programmers to sketch directly on the
code editor for note-taking, such as CodeAnnotator [9] and Code-
Graffiti [29]. However, similar to the sketch-to-code approaches
discussed in Section 2.1, these sketches primarily serve as static
externalizations of users’ thoughts rather than interactive mediums
for code manipulation. Consequently, sketches and programs re-
main separate modalities with distinct affordances. This limitation
restricts the practical application of sketching on code to scenarios
involving code comprehension or collaborative discussions.

However, integrating sketch-based annotations for planning
code edits with subsequent code modifications presents significant
challenges due to the inherent nature of the program. First, the dy-
namic and interdependent nature of codemeans changes in one part
can have cascading effects across the entire codebase, complicating
the predictive power of annotations. Second, the code’s non-linear
nature, where functions, variables, and classes interact in complex,
non-sequential ways, requires annotations to account for these
intricate relationships. Third, the rigid syntax and structure of code
demand precise and well-integrated annotations, unlike the more
flexible and informal notes used in text editing. Despite these chal-
lenges, using sketched annotations for planning code edits could
play a significant role in software development [10]. Samuelsson
et al. investigated common sketches for standard code editor com-
mands, such as inserting or searching code [54]. However, they
only considered using sketches as replacements for common IDE
commands, similar to previous research using gestures to replace
keyboard shortcuts [49]. Our research, in contrast, explores the
potential of transforming these annotations into actionable com-
mands for code editing, allowing programmers to make annotations
and edits without constant context switching between code and
external spaces like canvases or paper.

3 CODE SHAPING
The code shaping concept enables programmers to edit code using
freeform sketches directly on or around the code. This approach in-
cludes three core elements: a sketching canvas, a responsive code
editor, and an AI that interprets sketches to generate code edits.

In a code shaping session, programmers sketch their intended
modifications on an invisible canvas overlaid on the code. These
sketches can include arrows pointing to specific lines, pseudocode
defining a function’s structure, and annotations indicating desired
changes. The sketches can interact with any part of the code and out-
put in the console and graphical view. Once sketches aremade, users
can press a button to prompt AI to interpret their sketches along
with the code. If the resulting code does not match the program-
mer’s intent, they can refine their sketches, creating an iterative
cycle of input and feedback. This feedback loop allows program-
mers to use sketches progressively and iteratively to shape how the
code should be structured, how it should flow, and how it should
function, guiding it towards the desired form and functionality.

In the following sections, we describe a series of three design
studies (stages) to develop a proof-of-concept system and interface
for the core code shaping interactions. The first stage examined
the types of annotations used in code shaping. The second stage
focused on exploring model interpretation errors and the strategies
programmers employed to address them. The final stage synthe-
sized prior stages’ insights, aiming to coordinate the interactions
when editing code, iterating with AI, and sketching on the canvas.

4 STAGE ONE: EXPLORE SKETCHES
We developed a basic user interface to explore how participants
used sketches as actionable commands for code edits. We observed
and categorized participants’ challenges and sketch types, providing
foundational insights for the code shaping system’s development
in subsequent stages.

4.1 User Interface
For this stage, the user interface creates a
straightforward way to make free-form sketches
in the canvas layer to directly generate code ed-
its affecting the code layer while keeping the
AI layer hidden to the user. The interface sup-
ports typical free-form sketching tools, includ-
ing colour selectors, pens, erasers, and shapes

(Figure 2a-b). A text tool is available for conventional editing. Two-
finger panning and zooming navigate the code in the editor to
enable sketching at different levels of granularity. A pointer tool
can select strokes in the sketches. Pressing a “Generate” button
uses all annotations on the canvas, or only selected annotations, as
parameters for generating edited code (Figure 2c). The system rec-
ognizes free-form annotations on the code editor, utilizing GPT-4o
to generate corresponding code. We render HTML content from
both the code editor and sketches onto separate canvases and em-
bed these canvas content into an SVG. This transformation process
includes handling CORS and tainting issues, adding grids to locate
annotations, and turning the code editor to grayscale to highlight
the sketches. The system then considers the annotations along-
side previous version history, including pictorial representations of
sketches, code snapshots, conversational context, natural language
inputs, and modified code outputs. The stored history was used
to contextualize model responses and maintain a comprehensive
context of the evolving codebase. After the code is generated, a
difference algorithm is employed to only update the changed sec-
tions of the code [40]. The user can press a “Run” button to execute
the code, with text or image results shown in the console panel
underneath (Figure 2d). Programmers can annotate any output on
the console or graphical windows as part of their sketches. The
system incorporates these annotated outputs by transforming them
into separate canvases, embedding them as SVGs alongside the
code editor content, and encoding them for processing.

4.2 Participants, Tasks, and Procedure
We recruited 6 programmers (1 left-handed), aged 23 to 28, with
4 identifying as women and 2 as men. Participants were recruited
through convenience sampling and received $30 for completing
the study. Based on a screening questionnaire, participants had 2-8
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Figure 2: Interface design from the first stage. (a) Pen tool with color options for code annotation; (b) Canvas tools including
select, pan, pen, eraser, and other common shapes; (c) AI-powered “Generate” button for translating sketches to code edits; (d)
“Run” button executes Python code and displays output in the console.

years of programming experience in Python and had used ChatGPT
or Copilot 3-12 times per week.

We developed three Python coding scenarios, each comprising
two tasks that required specific edits to achieve predefined goals.
These scenarios spanned different programming paradigms: basic
object-oriented programming, functional programming formachine
learning, and declarative programming for data engineering. Each
task provided participants with starter code requiring modifications
in multiple areas. For instance, scenario 2 involved extending a
class to handle categorical features in data points, necessitating
changes to existing methods for feature encoding and distance
calculations. All tasks were pre-tested to ensure that GPT-4o could
not immediately generate the correct code.

Participants were assigned 2 out of 3 scenarios that they were
most familiar with, as determined by their screening questionnaire.
Each scenario consisted of 2 tasks, and participants completed all
4 tasks (2 scenarios × 2 tasks each) within a total of 60 minutes,
spanning around 12 to 16 minutes per task. The order of scenarios
and tasks was pre-assigned, meaning participants completed all
tasks within one scenario before moving on to the next scenario.
The study was conducted in person using an Apple iPad Air (5th
generation, 10.9-inch display) as the primary research tool. An ex-
perimenter was present throughout each session to observe and
document participant behaviours. Finally, a semi-structured inter-
view gathered qualitative data on participants’ general experience,
challenges encountered, and suggestions for system improvement.

4.3 Data Analysis
We conducted an inductive thematic analysis of participant-generated
sketches. This analysis incorporated observational notes, screen
recordings, transcribed think-aloud data, and interview notes. Sketches
were automatically captured in base64 format each time the gener-
ate button was activated, yielding 81 distinct screenshots. Of these,
7 were identified as duplicates and subsequently removed from the
analysis. We developed a codebook covering five dimensions: Con-
tent (text, code, annotation, freeform), Approach (step-by-step, one-
time), CodeReference (parameters, targets), Purpose (functional,
procedural), and Form (concrete, abstract). All captured sketches
were verified and coded by researchers together. The results and
descriptions of each coding category are presented in Table 1.

task = Task(title, description, due_date) 

self.t task) 

list_tasks(self): 

for task in self.tasks: 

print task 

def list_completed_tasks(self): 

for task in self.tasks: 

if task.completed: 

print(task) 
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--

--

p2 

pS 
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functional 

ataframe.cc 
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Figure 3: The classification of sketched annotations from
participants situated in a quadrantwith two spectra, Abstract-
Concrete and Procedural-Functional.

4.4 Results
All but two participants completed the four assigned tasks; these
two participants did not complete scenario2-task2 within the
assigned time. There was a concern that experienced programmers
might be strongly biased toward typing code edits, which could
impact their experience with sketch-based code editing. However,
all participants appreciated the concept and expressed a willing-
ness to integrate it into their current programming workflow, as
it allowed them to “think deeper about the code” [P1] and “focus on
higher-level planning” [P6]. Participants used sketching to edit code
an average of 3 times per subtask (𝑆𝐷 = 4.0). Each instance of
sketching often included multiple annotations, with some sketches
encompassing edits to several parts of the code. Early-stage code
edits were primarily made through sketched annotations, but in
the later stages (12-13 minutes), edits occurred without sketches,
suggesting the use of a keyboard or undo/redo mechanisms to re-
fine code. P2 and P4 explained that they resorted to the native
tablet keyboard for edits to handle low-level details, as the waiting
time for model interpretation could exceed five seconds (in average
around 4-8 seconds based on the size of the codebase) in some cases,
making manual code changes faster, thus “would rather do it myself
[themselves]” [P4].

4.4.1 General Workflow. Participants sometimes wrote higher-
level instructions first when unsure about the solution but had
a rough idea of where the code edits should happen and what the
“shape of the code looks like” [P4]. After evaluating the edited code,
they then added annotations for lower-level code editing based
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Category Subcategory Description 𝑁 Example

Content Text Written text or natural language instruction 11 “impute missing value [...]” [P3]
Code Written pseudo code or code syntax 23 def update_task [P5]
Annotation Symbols and annotations 31 circle, arrow, underline
Freeform Sketches or drawings without clear structure 9 line chart [P1]

Approach One-Time Marked all possible changes before generating code
edits

25 “add due_date” as an attribute and pointing arrow to
the written def sort function [P4]

Step-by-Step Decomposing tasks and generating code edits after
each subtask

49 Copied “list_task” function, generated, then edited it to
be list tasks by “due_date” [P2]

CodeRef Parameter Referencing code as a parameter to contextualize gen-
eration

12 Circled data and pointed to plot [P3]

Target Reference to code as the target to be modified 28 Crossed out sampled data with “(int, int)” to “(int, str)”
[P5]

Purpose Functional Sketches express how the code should function 11 Sketching the sample processed output [P6]
Procedural Sketches express how the code should process or run 63 Sketching the flow from variables, to one-hot encoding,

to distance metrics [P5]

Form Concrete Sketches with a concrete or syntactic form 31 text, pseudo code
Abstract Sketches representing the abstract attributes (seman-

tic) meaning
43 annotations, freeform sketches

Table 1: Types of sketches used in stage one were categorized, and the number being coded was indicated by 𝑁 .

on their approaches in mind. We also observed two participants
gradually develop a personalized workflow for editing code with
sketches. P2 found that breaking down tasks into very low-level
details was ineffective and not necessary, while P5 emphasized the
need for smaller task pieces for better system understanding. This
difference arose because P2 included precise code-like keywords in
their sketches, minimizing the need for further detail.

4.4.2 Types of Sketches. Overall, the sketches can be situated in
a quadrant with two spectrums (Figure 3): Abstract-Concrete
and Procedural-Functional. The Abstract-Concrete spec-
trum describes whether the annotations are abstract symbols or
graphs versus concrete written text. The Procedural-Functional
spectrum classifies the target of the annotations, ranging from pro-
cedural steps describing how the program should be structured to
functional descriptions specifying how the program should work.
Participants often combined these aspects, drawing graphs and
adding arrows to refer to certain data attributes, specifying both
functional and procedural terms.

4.4.3 Sketch as a Tool. Additionally, we observed that participants
considered sketches as functional “tools” that could be reused [50],
not just as transient digital ink drawings. All participants expressed
that they could use different sketches to achieve the same effect,
choosing which sketch to use based on the environment, such as
available white space. They also reused their sketches to convey
the same effect; for instance, an arrow used to insert a function into
a specific line of code was reused by P3 to add another function.

4.4.4 Ambiguity of Sketches and Model’s Transparency. The pri-
mary challenge was the ambiguity of participants’ sketches. For
example, arrows were used inconsistently, sometimes indicating
context [P1] and other times denoting targets of changes [P4] (Fig-
ure 4a-d). The interpretation of these sketches often relied heavily

on surrounding code, leading to occasional misrecognition and mis-
interpretation. This necessitated an iterative refinement process.
However, this iteration became a significant source of frustration
for participants, largely due to the system’s lack of transparency.
Participants rated the clarity of the effect of their sketches on the
generated code poorly (𝑀𝑑𝑛 = 3.5, 𝑆𝐷 = 1.83), as well as the
ease of iterating on sketches (𝑀𝑑𝑛 = 4, 𝑆𝐷 = 2.34), on a seven-
point scale questionnaire. Participants struggled with not knowing
“where the code was being edited” [P4], an unclear mapping between
sketches and the edited code, and why the model misinterpreted
their sketches. This is considered as interpretation error than recog-
nition error.

4.5 Summary
The results revealed that programmers utilized diverse sketching
techniques, necessitating an iterative refinement process due to
the inherent ambiguity of these sketches. However, the current
iteration process was hindered by the AI model’s lack of trans-
parency, particularly in how it interpreted sketches and applied
code changes. To address this issue, we focused on identifying
potential misinterpretations of sketches by the AI model and ex-
ploring how programmers could recover from these errors in the
next stage.

5 STAGE TWO: MODEL INTERPRETABILITY
The second stage of our study focused on enhancing user control
over the model interpretation of sketches by providing different
types of brushes for sketching and adding feedback to convey the
model’s interpretation of the sketches.

5.1 User Interface
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Figure 4: Sketches from stage one showing how participants employ arrows (→) for different purposes, including command
(the intended action of operation), parameter (supplementing the command), and target (the area where the edit should occur);
(a) indicating procedural flow between commands; (b) referring to data attributes; (c) modifying a function, with the function
as the parameter to supplement the command; (d) applying changes to a target area.

The system was enhanced with three major fea-
tures to facilitate the above focus of our second-
stage study. First, command brushes were intro-
duced to allow programmers to convey their in-
tentions more precisely. For example, a “replace”
brush can instruct the model to limit its interpre-

tation to replacing existing code with the users’ sketches (Figure 5a).
Second, the underlying model interpretation mechanism was modi-
fied to recognize, group, and interpret sketches. The system groups
semantically related sketch marks each time the pen is lifted and
provides reasoning for the actions it interprets for each group (Fig-
ure 5b). These descriptions are displayed as tooltips next to each
sketch group, allowing users to edit the descriptions to refine the
interpretation or commit to executing the actions. Third, an inline
diff view was added to the code editor, enabling users to visualize
code changes as staged edits and choose to accept or reject these
changes (Figure 5c).

5.2 Participants, Tasks, and Procedure
Six new participants were recruited through convenience sampling,
with all right-handed, 2 identified as women and 4 as men. All
participants had 3-6 years of programming experience in Python
and had used ChatGPT or Copilot 6-14 times per week. The same
scenarios and tasks were used with the same procedure and data
collection. We applied inductive thematic analysis to the observa-
tional notes, screen recordings, system logs, captured sketches, and
interview notes to identify common types of model interpretation
errors, the strategies participants used to recover from these errors,
and insights related to the model’s interpretation.

5.3 Results
Four participants did not complete one of the four assigned tasks
from either scenario 2 or scenario 3. This incompletion was
acceptable, as our primary objective was to understand how par-
ticipants recovered from interpretation errors, rather than task
completion itself. We identified a total of 66 error and recovery

scenarios, categorized into six distinct error types (Table 2). Par-
ticipants employed six different repair strategies following three
major actions: rejecting/accepting code edits, or taking no action.

5.3.1 Feedback on Model Interpretation. Most participants (5/6)
appreciated having an interpretation as a preliminary step before
code edits. They noted it is necessary when code changes went
wrong (5/6), when they were unsure about how the code should be
implemented (4/6), and when tasks required decomposition (2/6).
However, most of the time, they could rely on the code diff view as
it indicates the model’s interpretation, especially if their sketches in-
cluded pseudocode. They expressed that the interpretation feedback
should include the recognized items and text within the annota-
tion (6/6), the model’s recognition of non-textual annotations and
sketches (5/6), suggestions for code edits (3/6), and the linkage
between sketches and code edits (2/6).

5.3.2 Common Errors and Strategies to Repair. Of all sketches,
23.2% required iterations due to model interpretation errors. Com-
mon errors (Table 2) included mismatches between code imple-
mentation and user expectations, incorrect interpretation before
code edits, wrong recognition of sketches, no code edits being
made, incorrect scope of code changes, and wrong modified code
syntax causing runtime errors. The most frequent error was code
mismatches, which were detected after code edits, P10 questioned
whether the error happened “because my drawing was not clear
enough or my [written pseudocode] was not recognized.” The second
and third most common were incorrect interpretations of user ac-
tions and recognitions, which participants could identify before
any code changes occurred. In these cases, some participants (4/6)
chose to refine their sketches before generating the code edits, while
two participants occasionally still pressed the generate button, P11
explaining this due to “not knowing how should I refine the sketches.”

In most cases, participants attempted to repair errors by redraw-
ing sketches. In two instances, they edited the code directly using
the tablet’s keyboard, in three cases they adjusted the interpretation,
and in four cases they used control brushes. However, participants
only used the control brush when redrawn sketches were still not
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Figure 5: The interface design from the second stage. (a) Command brushes used to steer AI model’s interpretation, including
reference, delete, add and replace; (b) interpretation of sketches displayed as tooltips, programmers can click on the preview
(recognized sketches) and see the full description of AI’s reasoning of actions; (c) programmers can click on the commit button
to execute the actions, edited code will be shown in diff view and programmers can accept/reject it.

recognized. P9 explained, “I would think that it’s because of the recog-
nition error or code referencing error, then realize it’s misinterpreting
what I want to do.” Overall, these repair strategies can be cate-
gorized into three types: selection, instruction, and target. These
included adding textual instructions, adding annotations, removing
unnecessary sketches, rewriting pseudocode, adding code syntax,
and adding references pointing to other target code (Table 2). For
instance, P9 changed the written text from “handle” to “def” to
specify that the handling should be implemented in a new function.
Some participants redrew sketches to prevent new annotations
from obscuring the code when no sketches were detected, suspect-
ing that “the sketches blended into the code” [P11]. This concern is
valid, as the system overlays the sketch layer on top of the code
layer in the pictorial form to associate sketches with specific lines
of code during interpretation. All participants used strategies such
as adding code targets and references to “make sure correct code is
being used” [P7] or “only changing specific area [of code]” [P8]. For
instance, P8 circled the DataProcessor class to ensure that new code
edits were implemented as methods within the class rather than as
standalone functions outside it.

5.3.3 Control Over Model Interpretation. Most participants (5/6)
did not find control brushes particularly useful. Two participants
preferred interacting directly with the code editor rather than using
specific brushes to constrain the AI model. They favoured simple
arrows and cross-outs to indicate code replacements instead of
different brushes. All participants found that sketches alone were
expressive enough to guide the AI model in correcting its interpre-
tation. For example, P10 added a numbered label to the pseudocode,
“→ str:”, to indicate that the AI should prioritize interpreting that

annotation first . We observed that three participants
tended to wait for the interpretation to complete before generating
code edits to “not lose control over my [their] own code” [P9].

5.3.4 Sketching, Correcting Model, and Editing Code. All partici-
pants primarily attributed their frustration with iteration to the
need for context “switching between the code editor and the can-
vas” [P9]. The interface required a double-tap to enter or exit the
code editor for tasks such as accepting/rejecting code edits, undo-
ing/redoing actions, and performing manual edits (though these
were less common). Due to the dynamic nature of programming,
where each edit builds on previous modifications, the frequent need
for interpretation and the requirement to accept or reject code edits
often disrupt participants’ flow. Consequently, most participants
(5/6) preferred to complete all sketches first and then use the “gen-
erate” button as a clear boundary between debugging and sketching
modes, avoiding repetitive context switching.

This context switching also involved changing mental models
and using different input modalities, leading to errors. For example,
some participants (3/6) frequently selected the wrong tools due
to overlapping semantic meanings, such as P11 using the eraser
to delete code or the pointer to select code. These findings high-
light the importance of enabling interactions with the code editor
“through” the canvas layer, effectively translating certain canvas
layer interactions into actions within the code editor layer.

5.4 Summary
While feedback on AI interpretations added value, the method used
in this stage disrupted the programmers’ flow. The goal of code
shaping is to allow programmers to edit code structure through
sketches, rather than engage in low-level code editing or prompt
engineering for the AI system. The control brushes did not per-
form as expected; participants preferred refining their sketches by
adding more code references or employing code syntax to shape the
outcome. This tendency can be linked to the cognitive dimension
of premature commitment—forcing programmers to make decisions
too early [15], which conflicts with the iterative nature of code
shaping. The findings underscore that the key to facilitating code
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Table 2: Results from stage two showing AI interpretation error types and corresponding participant repair strategies.

ERRORS REPAIR STRATEGIES

Type Description 𝑁 Action Type Description 𝑁 Example

Code
Mismatch

code does not match
intended implementation 25 Reject Add Code

Target
specify target of code
changes 15

Code Error contains syntax or logical
error 3 Add Code

Reference
add context for
generation 11

No Changes no code changes being made 7 Precise
Annotation

rewrite text or redraw
annotations 11

Wrong
Action Inter-
pretation

interpret the action wrong
before generate code edits 14 Add Pseudo

Code
add code syntax or
symbols 19

Wrong Scope
of Change incorrect code range edited 4 Accept Next Round accept code edits then

annotate again 4

Wrong
Recognition

recognize the sketches
wrong 13 No Action Regenerate generate code again

without modifying sketch 6

shaping is an interaction design that minimizes the conceptual
layers between the code editor and the sketching canvas.

6 STAGE THREE: TOWARDS RECONCILING
SKETCHES, AI, AND CODE

To bridge the conceptual gap between interacting with the code
editor and the canvas, the user interface was modified in two key
ways. Insights from the previous stage suggested that unnecessary
code changes could be minimized by confirming interpretations
before generating edits. Building on the types of interpretations
identified, we introduced an always-on feedforward mechanism
through subtle visual cues. This approach allows programmers to
iterate more quickly without delving into code details. Additionally,
to reduce the cognitive load of switching between layers, we devel-
oped unique gestures that enable users to interact directly with the
code editor through the canvas.

6.1 User Interface
Unnecessary GUI elements were removed to
keep the interaction focused on sketches. The
button for sending sketches and code to the
model was renamed “Commit” to make it clear
that a change will be applied to the code. Only
this button and the “Run” button were retained
in the GUI, as participants preferred having ex-

plicit controls for these actions rather than relying on implicit
gestures. We open sourced the code for this stage at https://github.
com/CodeShaping/code-shaping, including all the prompts used.

6.1.1 Ink and Gestures. Based on insights from the previous two
stages, we classified common interactions during code shaping into
five key categories: navigating the canvas and code, undoing and
redoing actions such as code edits or sketches, selecting code or
sketches on the canvas, accepting and rejecting code changes, and
creating free-form sketches (Table 3). Multi-touch gestures were
assigned to system-level interactions, such as panning for naviga-
tion and two- or three-finger double-tapping for undo and redo
actions. Selecting items on the canvas or within the code editor
was differentiated by the duration of a single touch: a single tap
for canvas items selection (Figure 6a) or a long press followed by
dragging for code selection (Figure 6b). Contextual action buttons,
such as delete and copy, are displayed next to the selected code
or within the selection box of canvas items, allowing for quick
access to common actions. We implemented unique stroke gestures
for accepting or rejecting code edits using the $1 unistroke rec-
ognizer [66] to detect check (Ë) and cross (é) marks (Figure 6f).
The Google Cloud Vision API was employed for robust recognition
of handwritten text, enhancing the system’s ability to interpret
written pseudo code or textual instructions.

6.1.2 Always-On Feedforward Interpretation. Building on insights
from the second iteration, we focused on providing only three essen-
tial types of interpretations that users truly needed: (1) recognizing
how the model interpreted written text, code, and annotations (Fig-
ure 6c); (2) describing the code editing action inferred by the model;
and (3) indicating the code context by highlighting relevant pa-
rameter code, displaying blue vertical line glyph decorations, and
marking potentially affected code areas with a→ icon beside the
line number on the glyph (Figure 6d). To identify the relevant code,

https://github.com/CodeShaping/code-shaping
https://github.com/CodeShaping/code-shaping
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Figure 6: The interface design from the third stage. (a) programmers can use one finger tap and drag to select items on canvas;
(b) tap longer and drag will select code with contextual menu beside; (c) the always-on feedforward interpretation showing the
interpretation of sketches or text, the reasoning of action, and the related code; (d) the gutter will be decorated to indicate which
code being referenced and which code will be affected; (e) the related code syntax will be highlight transiently; (f) programmers
can commit the changes and (g) draw check/cross to accept/reject code edits.

we traversed the abstract syntax tree (AST) to dynamically high-
light code syntax related to the user’s input. The interpretation
process is triggered 500 milliseconds after the user stops sketching,
ensuring timely feedback while minimizing disruptions (Figure 6e).
The average latency between the input request and the complete
output measured from the second study is approximately 2.87 sec-
onds (𝑆𝐷 = 1.45). However, since interpretations are generated in
real-time as users are sketching, it is possible for the system to pro-
duce correct results even before all annotations are fully completed.
We implemented a cascade interpretation approach, sequentially
processing pen or touch input, predefined gestures, text and shape
recognition, code edit action reasoning, and affected code analy-
sis. This approach enables programmers to adjust their sketches
concurrent with system evaluation, rather than waiting for the
final step. These feedforward interpretations were not directly dis-
played on the canvas or situated within the code but were instead
ambiently presented, updating on the fly to offer guidance when
needed. To enhance usability, especially for right-handed users, we
repositioned the interpretation text from the upper right to the
lower right of the screen. This adjustment allows users to occlude
the interpretation with their hands while sketching, minimizing
interference with their workflow.

6.2 Procedure and Data Analysis
We recruited six new participants for this study, including five right-
handed individuals, four of whom identified as women and two
as men. They had between 2-8 years of programming experience
in Python and used ChatGPT or Copilot 4-12 times per week. We
reused the same setup and tasks to ensure consistency in our results
across studies. We added several system logs for gesture recognition
and recorded input images, which served as parameters for the
always-on feedforward interpretation. We collected 187 sketches,
48 of which were recorded when participants hit the “Commit”
button. We employed inductive thematic analysis to examine all
collected data, including sketches, system logs, video recordings,
observational notes, and transcribed interview audio recordings.
The iterations were defined by the accomplishment of subtasks that

participants themselves decided upon and decomposed from the
main study task’s goal. We then categorized the common flow of
actions within these iterations.

6.3 Results
The analysis revealed several themes that shaped participant expe-
riences.

6.3.1 Flow of Actions. We identified seven common action flows
among participants, highlighting patterns in how they navigated
between sketching, code editing, and reviewing interpretations
(Table 5). These flows generally followed a sequence that can be
counted as a full iteration:

Sketch → (Interpret) → Generate → (Run Code)
→ Accept/Reject → Re-Sketch/Undo/Redo

Some of these flows were also observed in the previous stages but
were more pronounced in this stage. Participants appeared more
aware of their workflows, especially during interviews when recall-
ing their processes. This contrasts with earlier iterations, where
participants often expressed uncertainty, such as “hopefully the
code edits are correct” [P8]. They chose different methods to iterate
when code edits were incorrect, adapting their actions based on
the situation. For example, P14 mentioned using the undo/redo
function (ID 4 in Table 5) for interpretation errors, while opting for
the re-sketch approach (ID 3 in Table 5) in other cases.

6.3.2 Always-On Feedforward Interpretation. After viewing the in-
terpretation, participants pressed the “Commit” button 32.4% more
frequently in the third stage compared to that in the second. P15 ex-
plained, “the interpretation shows what code is possibly being affected
is useful to make sure it will not mess up my code”. This underscores
the value of glyph decorations in the always-on interpretation, as
they may help participants confirm their intended code changes.
Three participants echoed sentiments from the second iteration,
appreciating the control provided by the interpretation. P16 noted,
“I feel more confident that it’s on the right track [...] I don’t want it to
be a black box”.

Four participants stressed the importance of waiting for the cor-
rect interpretation before committing to changes, even if it required



Yen et al.

Table 3: The assigned touch and pen gestures to the third stage, enabling interaction across both code editor and canvas layers.

Touch Pen

Navigation Undo command Redo command Select code Select canvas
objects

Accept / Reject
code edits

Free-form
sketching

Two fingers pan Two-finger double
tap

Three-finger
double tap

One finger long
press then drag One finger drag Check (Ë) / Cross

(é) drawing

slightly more time compared to directly pressing the commit button.
P13 explained, “I would rather wait a bit longer than evaluate the
wrong generated code edits”, reflecting a preference for clarity over
speed. The feedforward interpretation also guided participants on
their next steps, regardless of whether the interpretations were cor-
rect. For instance, P15 noted that a previously correct target code
section became incorrect after adding an arrow for code reference,
indicating a misinterpretation of the arrow.

6.3.3 Sketching or Editing Code. A key goal of this design was to
reconcile the conceptual layers between the code editor and the
canvas. While all participants did not report difficulty switching
between contexts, they perceived them as distinct. As P14 observed,
“I still think of the code and annotations separately in my mind”.
However, participants found the unique gestures and strokes for
interacting with the code editor “straightforward” [P17] and felt that
it “makes me [them] feel like the sketch is affecting the code” [P18].

A notable improvement was that most participants (5/6) ex-
pressed no need to use the keyboard, even for simple edits like
deleting a line of code. When asked why they preferred using a
strikethrough to indicate deletion instead of using the backspace
key, P14 explained, “I just want to use sketches and annotations as
the only way to change my code”. This suggests a sense of embodied
interaction, something reinforced by P12, “It’s like my hands are
directly editing the code based on how I want the code to be.” However,
the predefined é gesture for rejecting code edits was triggered by
accident once when P17 wrote “x” as part of the sketch.

6.3.4 Conceptual Shift in Code Editing. Participants demonstrated
a shift from linear to spatial thinking in their code editing pro-
cesses. As P16 observed, “I’m no longer just writing line by line [...]
I’m arranging my thoughts spatially”. This reflects a move away
from a traditional, syntax-focused approach to one that emphasizes
the overall structure and flow of the code. Another participant,
P14, highlighted this shift, stating, “it’s more about the higher-level
structure and flow of the code as a whole”.

6.3.5 Freedom and Flexibility. The iterative process enabled by
free-form sketching provided participants with a sense of creative
freedom. P15 reflected, “This lets me play around with ideas in a
way that’s more fluid and creative [...] I’m experimenting”. All partic-
ipants mentioned that they would often resketch the code edit even
when the generated edits were correct, as they discovered better
ways to tackle the task. P14 noted that the canvas and undo/redo

mechanisms allowed them to “draw whatever we [they] want and
see how the code changes”.

However, while participants valued the freedom of sketching,
they also tended to “compromise” based on the AI’s interpretation
capabilities. For instance, P18 consistently used squares instead of
circles because “the rectangle works better” and did not obscure the
code. As a result, participants developed preferences for specific an-
notationswith the system along the time. P14, for example, switched
to using crosses after observing that strikethroughs occasionally
applied to the wrong lines of code. Over time, these preferred an-
notations became interchangeable in practice, as participants felt
they “expressed the same meaning”.

6.4 Summary
The third stage highlights the effectiveness of defined gestures and
always-on feedforward interpretation in reducing the transmission
gap between the conceptual layers of the canvas, code, and AImodel.
This design iteration demonstrated how to display the model’s
interpretation, and designed interactions that minimize the need
for layer switching. While minor challenges remain, such as the
rare misinterpretation of sketched gestures and some persistent
between AI interpretation and actual applied code edits, these issues
can likely be addressed by advancements in AI models.

7 EXAMPLE USE CASE SCENARIOS
We demonstrate how code-shaping could integrate with current
programming practice in two usage scenarios. The interactions
and user interface features to support these are real, we only had
to modify the study prototype to support multiple files. Back-end
infrastructure, like syncing code with a desktop editor is not imple-
mented. Also see the accompanying video to view these scenarios.

7.1 Programming on the Couch
Alicia, a data scientist, is improving a machine-learning preprocess-
ing pipeline distributed across multiple files. She wants to introduce
flexible scaling and proper categorical encoding for both training
and testing datasets. Seeking a fresh perspective, Alicia grabs her
tablet and opens the Code Shaping editor to explore solutions.

To start, Alicia opens the editor support code shaping para-
digm and runs the current code. She observes that the output
does not handle categorical data correctly. Beside the data pro-
cessing pipeline code, Alicia draws a flowchart directly on the
tablet’s screen, visually aligning sketches to the vertical layout
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of the code. This flowchart proposes a branching structure start-

ing from the code, def preprocess_pipeline →
→ processed data . The system’s feedforward interpretation (Fig-

ure 6c) and the gutter (Figure 6d)
highlights the affected lines, showing that the code will now include
a one-hot encoding step where previously categorical features were
ignored . Alicia commits these changes
using the commit button (Figure 6f) and then re-runs the code.
The updated pipeline applies one-hot encoding to categorical fea-
tures as intended. However, Alicia notices the code still ignores the
scaling parameter.
To address this, Alicia decides to refine her sketches without

losing her previous changes. She uses a one-finger tap-and-drag
gesture (Figure 6a) to select the existing flowchart elements. She
taps and drags downward on part of the numerical branch to create
space and adds a new annotation: min-max→ . The
feedforward interpretation and gutter again indicates what text be-
ing recognized and which code lines will be altered. Alicia commits
these changes, and the editor transiently highlights the updated
code snippet (Figure 6e). With the pipeline now meeting her re-
quirements, Alicia draws a check mark to finalize the changes and
remove any temporary sketches (Figure 6f). She re-runs the pipeline
and confirm that the changes consider the scaling parameter.

7.2 Collaborative Code Reviewing Meeting
Blair and Carol, senior software developers at a fintech startup,
stand before a large interactive whiteboard running the code shap-
ing interface. They are reviewing the core process_transaction

function of their payment system. Blair loads the function into the
editor on the board. Carol, stylus in hand, circles a block of nested
if-statements for transaction validation. “These lines are slowing us
down” she says, sketching a flowchart beside the code illustrating a
streamlined process with early returns. The system highlights the
affected code sections, showing how Carol’s sketch translates to
code changes. Blair adds to the sketch, drawing parallel arrows for
certain validation steps, suggesting “What if we run these checks
concurrently?”.

Carol taps the commit button to see the final edits, but then
spots a potential race condition in the new parallel structure. Blair
undoes the modifications with a two-finger doubletap, and Carol
sketches a newflowwith theword “async” for concurrent validation.
While editing this section of code, Blair notices an opportunity to
optimize database queries. He circles lines of code making multiple
separate queries and draws a diagram of a batched query approach,
consisting of a few boxes representing queries connected by arrows
flowing into a single “batched query” box. The AI model modifies
the code to use a query builder pattern. Carol points out that this
change might affect error handling. She sketches a new try-catch
block structure around the batched query execution. The system
modifies the code based on her sketch, with the changes highlighted
in green as staged edits. As they near the end of their session, Blair
and Carol review their changes holistically. They use check-marks
to accept desiredmodifications and crosses to reject others, iterating
through the highlighted sections.

8 DISCUSSION
We discussed participants’ multi-level abstraction approaches to
shape code, the use of sketches to constrain generated code edits and
the design implications of code shaping as a new input paradigm.

8.1 Interacting with Code Across Multiple
Levels of Abstraction

A program is an inherently abstract entity, lacking a fixed form, and
can be conceptualized in various ways—from its tangible output,
such as a web page, to the underlying code syntax [18]. In this paper,
we explored the use of sketches as a medium for programmers to
express how they envision codemodifications across different levels
of abstraction [57, 58, 69]. Our initial findings revealed that partici-
pants used diverse methods to convey their intentions: some drew
visualizations, others provided natural language instructions, and
some simply wrote pseudocode. This flexibility stands in contrast
to prior methods that rely on one-to-one mappings, such as natural
language directly translated to code, predefined visual program-
ming objects, or output-directed programming, wheremanipulation
of output changes the underlying code.

While this paper does not focus on the detailed translation of
sketches from various abstraction levels into code, our classification
of elements that programmers include in their sketches offers a
compelling starting point. For instance, in the third stage of the
study, we observed that two participants expected the generated
code to retain specific function names with underscores as a con-
vention used in Python. However, the AI modified these names to
follow a “camelCase” format for consistency with other generated
code edits. This suggests that while code shaping provides high-
level constraints on where and how code edits should occur, the
finer details of translating between different abstractions, such as
which stylistic elements to preserve, deserve further exploration.
Investigating which aspects of sketches should remain consistent
and which can adapt in terms of structure or format presents an
intriguing direction for future research [13].

8.2 Scope of Sketches
Code shaping represents the concept of sketching on and around
code to perform edits by bridging freeform sketching, AI interpre-
tation, and code. Based on participant tasks, sketches were catego-
rized into commands (intended actions), parameters (supplemen-
tary details), and targets (specific areas to edit), see Figure 4. These
sketches often included text, annotation primitives, code syntax, or
symbols, and participants occasionally extended them to diagrams,
visualizations, or symbolic visuals.

Our findings highlight several tradeoffs in using different sketch
representations. First, there is a cost of structure. Participants often
preferred minimal-effort annotations that were effective, as creat-
ing detailed sketches required significant effort, consistent with
information sensemaking [52]. Second, while the current model can
handle many low-level operations (e.g., deleting code, renaming
variables, or wrapping lines in functions), participants sometimes
opted to type directly for efficiency in Study 1 (e.g., P2 and P4). This
suggests a need for integrating primitive gestures, as demonstrated
in our third iteration and explored in prior studies [54]. Lastly, ab-
stract sketches, though semantically rich, are often difficult to be
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evaluated and required iterative refinement to align with linguistic
code forms. Future research can focus on exploring other types of
feedforward interpretation introduced in Sec. 6.1.2.

Overall, code shaping does not attempt to dictate the boundaries
of user expression or current model capability. Instead, it seeks
to classify sketching approaches, highlight tradeoffs, and offer ac-
tionable insights for designing interaction. Our study revealed that
participants’ sketches were highly flexible, adapting to AI perfor-
mance and specific contexts, making their scope inherently mal-
leable. For example, in Task 2, some participants used arrows to
signify variable type changes, like “(int, int) → (int, string)”, while
others annotated function parameters directly. Although both text
and symbols were interpreted correctly, the model struggled to map
between the sketch to the intended edits accurately due to the am-
biguity inherent in context-dependent sketches. These challenges
emphasize the critical role of iteration in code shaping, where users
refine their sketches, receive feedforward, and adjust their input to
better convey intent.

8.3 Shaping AI Output with Sketches
While we did not compare sketches to textual prompts directly,
some participants (5/18) across the three stages noted that the spa-
tial nature of sketches helped them convey how they wanted to
edit “with more control” [p7]. This suggests a balance between the
freedom offered by sketches and the constraints imposed by AI
interpretation of code edits. Code shaping tackles this challenge by
using freeform sketches to guide the AI interpretation of where and
how code edits should be applied, written, performed, or referenced.
Traditional AI-driven code generation tools typically rely on natural
language input or UI elements drawn on separate canvases, gen-
erating code from different mediums without directly interacting
with the code itself. This can lead to almost limitless variations in
the way natural language is mapped to code structures, which may
not always align with the intent of the programmer [33]. One ap-
proach exploring the concept of programmable ink, illustrating the
potential of combining sketching with computational workflows by
enabling users to bind sketches to data and explore outputs dynam-
ically [32, 42, 67, 68]. However, their focus on binding sketches to
predefined computational roles can limit their flexibility for scenar-
ios like code shaping, where the emphasis lies on annotations as
interpretative guides rather than functional artifacts. Code shaping,
therefore, differentiates itself by intentionally keeping sketches
free from intrinsic computational meaning but remains the capa-
bility to shape AI interpretation by layering sketches on code. The
combination of sketches and handwritten textual instructions for
prompting enhances the precision of the edits while maintaining
flexibility [19], and balances creative freedom with the necessary
structure to achieve desired outcomes.

8.4 Informal and Formal Programming
Our findings show that when participants are provided with a pen
to code, they approach the program differently (Section 6.3.4), This
approach highlights the contrast between the structured nature
of typing code syntax and the more abstract thinking about pro-
gram structure, flow, and function. Code shaping, unlike previous

programming-by-example approaches [39], extends current pro-
gramming paradigms by integrating code and sketches, allowing
programmers to interact with their work in ways that balance struc-
tural precision with creative flexibility (Figure 3). This aligns with
Olsen’s heuristics [43] by demonstrating high expressive leverage
and reducing solution viscosity since users can achieve complex
edits without articulating structured forms of representation, all
while maintaining creative flexibility and structural precision.

The domain of programming presents a unique opportunity for
study, as code takes various shapes highly dependent on its sub-
strate, ranging from editor-based code to syntax within diagrams,
visualizations, user interfaces, and even comics [58]. While there
are ongoing discussions comparing differences between text-based
programming with higher-level representations [36, 41], code shap-
ing aims not to replace typing but to expand the programmer’s
interaction palette. Rather than viewing our research solely as a
problem-solving method [20], we explore new insights and design
possibilities emerging from evolving technology [6]. The historical
progression from handwritten programs and sketches on printouts
to punch cards and eventually typing in an editor illustrates how
each programming paradigm unveils unique affordances and con-
straints [2]. We envision a shared future where programmers can
approach their craft through diverse methods, both formal and in-
formal [48]. Future research can explore additional representations
that bridge the gap between established typed input conventions
and the dynamic possibilities of sketch-based interactions, further
enriching the programming experience.

9 LIMITATIONS AND FUTUREWORK
Our work demonstrates the potential of code shaping as a novel
interaction paradigm, but we acknowledge several limitations. First,
while our evaluation utilized Python as the programming language,
its flexibility and dynamic nature make it a suitable testbed for
prototyping various programming paradigms, including object-
oriented, functional, and procedural styles. Code shaping is not
inherently bound to Python or any specific language, as the ink
annotations are not tied to computational semantics. While this
suggests it might work with other languages, the user experience
might differ and required future work to explore how different
programming languages potentially influence the effectiveness and
usability of sketch-based code editing.

Second, the current implementation primarily focuses on small
codebases (78 lines of code from scenario two), where the relation-
ship between sketches and corresponding code edits is relatively
straightforward. Sketching to edit larger codebases across multi-
ple files might require the implementation of retrieval-augmented
generation [70]. Additionally, resolving downstream and upstream
implications of code edits, such as propagating variable renames or
function refactorings, would require dependency analysis and in-
cremental static analysis techniques to track and update references
across the codebase. Currently, these dependencies are implicitly
managed by the AI model, but implementing explicit dependency
resolution mechanisms, such as abstract syntax tree (AST) traversal
or control flow graph (CFG) augmentation, may be necessary for
handling larger, interdependent codebases effectively. This may
further involve developing more sophisticated AI models capable of
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understanding and interpreting complex sketches that span multi-
ple levels of abstraction or integrating visual modeling tools directly
within the code editor. Similarly, while our system supports mul-
tiple files as demonstrated in the scenarios, we did not conduct a
comprehensive evaluation or support a single “sketch” spanning
across multiple interdependent files. Investigating how code shap-
ing can support multi-file editing, maintain context across files,
and handle dependencies effectively will be crucial for extending
the applicability of this approach to more complex development
tasks. Finally, our study provides initial insights into the potential of
code shaping, but further investigation is required to understand its
long-term impact on programming practices, particularly in terms
of code quality, maintainability, and developer productivity. We
define code shaping in the context of code editing, where sketches
are not persistent since they are removed once committed changes
are accepted or rejected, or manually deleted. Future research could
explore whether versioning sketches is a desirable feature. This
could be beneficial for other coding activities such as resolving
merge conflicts, refactoring, or asynchronous collaboration.

10 CONCLUSION
We introduced the concept of code shaping, an interaction paradigm
that enables programmers to iteratively edit code using free-form
sketch annotations directly on and around the code. Through three
stages of design iterations and user studies, we explored how pro-
grammers perceive code shaping, the types of sketches they create,
common AI interpretation errors, and how they recover from them.
We also investigated interface design strategies to effectively bridge
the layers between textual code and sketches, such as providing
always-on feedforward and integrating unique gestures tominimize
context switching. Our findings offer valuable insights into how
sketch-based interactions can support code planning and editing,
informing future research and design in this emerging area.
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A STATISTICAL RESULT FROM THREE ITERATIONS

Metric Median Statistics
Iter. 1 Iter. 2 Iter. 3 Comparison r p-value

UMUX-LITE (SUS) 60.82 66.23 82.48
1 vs 2 1.429 0.279
2 vs 3 0.000 0.066
1 vs 3 0.000 0.031*

NASA-TLX Score 3.92 2.83 1.92
1 vs 2 2.041 0.500
2 vs 3 0.817 0.138
1 vs 3 0.000 0.094

Self-Defined Likert Scale Questions

Iterating on my sketches was easy 4.0 5.0 6.5
1 vs 2 3.674 0.844
2 vs 3 0.000 0.039*
1 vs 3 1.429 0.156

The sketches encapsulated what I intended to achieve 5.5 5.5 5.5
1 vs 2 2.654 0.783
2 vs 3 0.408 0.655
1 vs 3 1.414 0.688

The re-generated code aligned with my intended changes 4.5 5.0 6.0
1 vs 2 1.225 0.892
2 vs 3 0.000 0.141
1 vs 3 0.707 0.063

I felt more control over the AI model and generated results 5.5 5.0 5.5
1 vs 2 2.236 0.786
2 vs 3 0.000 0.785
1 vs 3 0.500 1.000

I felt more control over the whole code editing process 5.0 5.0 6.0
1 vs 2 0.000 1.000
2 vs 3 0.866 0.059
1 vs 3 1.000 0.102

Table 4: Study results across three iterations, showcasing the median score, the effect size and p-value for each comparison.
Note: * indicates p < 0.05

B TYPES OF ACTION FLOW FROM STAGE THREE
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ID Name Description Example Scenario 𝑁

1 Sketch-Generate-
Accept

Participants sketch out code
concepts, generate the corresponding
code, and accept the generated code
without further modifications.

P14 sketches a method to sort tasks by due date,
generates the code, reviews the output, and accepts it
as it correctly implements the sorting logic.

32

2 Sketch-Generate-
Reject

Participants sketch a concept,
generate the code, and then reject the
generated code, leading to further
refinement of the sketch or code.

P18 sketches a Manhattan distance function,
generates the code, sees that the distance calculation
is incorrect, and revises the sketch by adding further
details before generating the code again.

25

3 Cycle2-Sketch After rejecting the generated code,
participants revisit and modify the
sketch before generating the code
again.

P15 rejects the generated task sorting function after
realizing it doesn’t account for tasks with no due
date. The P then revises the sketch to handle missing
due dates and regenerates the code.

17

4 Cycle2-
Undo/Redo

Participants use undo/redo actions
after rejecting generated code,
allowing them to adjust their
sketches or code without starting
from scratch.

P13 generates code to impute missing data, but
identifies an error in the logic. The P uses the undo
function, adjusts the sketch to refine the imputation
method, and regenerates the code.

6

5 Cycle2-Edit Code Participants directly edit the
generated code after rejecting the
initial output instead of refining the
sketch.

P17, after rejecting the code generated, decides to
manually edit the code for updating task details
instead of re-sketching the concept.

2

6 Sketch-Interpret-
Generate

Participants sketch an idea, allow the
system to interpret it, and then
decide whether to accept or reject
the system’s interpretation and the
generated code.

P16 sketches a conditional statement. The system
interprets the sketch and generates the
corresponding code, which the P reviews and accepts
as it matches the intended logic.

38/57

7 Sketch-Generate-
Compile

Participants generate code from a
sketch, compile the code, and then
debug and refine the sketch based on
compilation or runtime errors.

P14 generates the code, compiles it, and encounters a
runtime error. The P modifies the sketch to correct
the issue, regenerates the code, and recompiles
successfully.

11/57

Table 5: Identified action flow types for each iteration from stage three, with example scenarios from the study and frequency
counts (𝑁 ).
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